Fundamentals of Networking for Effective Backend Applications

Understanding the first principles of networking to build low latency and high throughput backends

husseinnasser

Introduction

Introduction

- Welcome
- Who this course is for?
- Course Outline

Fundamentals of Networking

The first principles of computer networking

Client-Server Architecture A revolution in networking

Client-Server Architecture

- Machines are expensive, applications are complex
- Seperate the application into two components
- Expensive workload can be done on the server
- Clients call servers to perform expensive tasks
- Remote procedure call (RPC) was born

Client-Server Architecture Benefits

- Servers have beefy hardware
- Clients have commodity hardware
- Clients can still perform lightweight tasks
- Clients no longer require dependencies
- However, we need a communication model

husseinnasser

OSI Model

Open Systems Interconnection model

Why do we need a communication model?

- Agnostic applications
 - Without a standard model, your application must have knowledge of the underlying network medium
 - Imagine if you have to author different version of your apps so that it works on wifi vs ethernet vs LTE vs fiber
- Network Equipment Management
 - Without a standard model, upgrading network equipments becomes difficult
- Decoupled Innovation
 - Innovations can be done in each layer separately without affecting the rest of the models

What is the OSI Model?

- 7 Layers each describe a specific networking component
- Layer 7 Application HTTP/FTP/gRPC
- Layer 6 Presentation Encoding, Serialization
- Layer 5 Session Connection establishment, TLS
- Layer 4 Transport UDP/TCP
- Layer 3 Network IP
- Layer 2 Data link Frames, Mac address Ethernet
- Layer 1 Physical Electric signals, fiber or radio waves

The OSI Layers - an Example (Sender)

- Example sending a POST request to an HTTPS webpage
- Layer 7 Application
 - POST request with JSON data to HTTPS server
- Layer 6 Presentation
 - $\circ \qquad \text{Serialize JSON to flat byte strings}$
- Layer 5 Session
 - Request to establish TCP connection/TLS
- Layer 4 Transport
 - Sends SYN request target port 443
- Layer 3 Network
 - \circ \qquad SYN is placed an IP packet(s) and adds the source/dest IPs
- Layer 2 Data link
 - \circ ~ Each packet goes into a single frame and adds the source/dest MAC addresses
- Layer 1 Physical
 - Each frame becomes string of bits which converted into either a radio signal (wifi), electric signal (ethernet), or light (fiber)
- Take it with a grain of salt, it's not always cut and dry

The OSI Layers - an Example (Receiver)

- Receiver computer receives the POST request the other way around
- Layer 1 Physical
 - Radio, electric or light is received and converted into digital bits
- Layer 2 Data link
 - The bits from Layer 1 is assembled into frames
- Layer 3 Network
 - The frames from layer 2 are assembled into IP packet.
- Layer 4 Transport
 - The IP packets from layer 3 are assembled into TCP segments
 - Deals with Congestion control/flow control/retransmission in case of TCP
 - If Segment is SYN we don't need to go further into more layers as we are still processing the connection request
- Layer 5 Session
 - The connection session is established or identified
 - We only arrive at this layer when necessary (three way handshake is done)
- Layer 6 Presentation
 - Deserialize flat byte strings back to JSON for the app to consume
- Layer 7 Application
 - Application understands the JSON POST request and your express json or apache request receive event is triggered
- Take it with a grain of salt, it's not always cut and dry

Client sends an HTTPS POST request

Across networks

The shortcomings of the OSI Model

- OSI Model has too many layers which can be hard to comprehend
- Hard to argue about which layer does what
- Simpler to deal with Layers 5-6-7 as just one layer, application
- TCP/IP Model does just that

TCP/IP Model

- Much simpler than OSI just 4 layers
- Application (Layer 5, 6 and 7)
- Transport (Layer 4)
- Internet (Layer 3)
- Data link (Layer 2)
- Physical layer is not officially covered in the model

OSI Model Summary

- Why do we need a communication model?
- What is the OSI Model?
- Example
- Each device in the network doesn't have to map the entire 7 layers
- TCP/IP is simpler model

husseinnasser

Host to Host communication

How messages are sent between hosts

- I need to send a message from host A to host B
- Usually a request to do something on host B (RPC)
- Each host network card has a unique Media Access Control address (MAC)
- E.g. 00:00:5e:00:53:af

- A sends a message to B specifying the MAC address
- Everyone in the network will "get" the message but only B will accept it

- Imagine millions of machines?
- We need a way to eliminate the need to send it to everyone
- The address needs to get better
- We need routability, meet the IP Address

- The IP Address is built in two parts
- One part to identify the network, the other is the host
- We use the network portion to eliminate many networks
- The host part is used to find the host
- Still needs MAC addresses!

Host A on network N1 wants to talk to Host B on network N2

Host 192.168.1.3 wants to talk to 192.168.2.2

But my host have many apps!

- It's not enough just to address the host
- The host is runnings many apps each with different requirements
- Meet ports
- You can send an HTTP request on port 80, a DNS request on port 53 and an SSH request on port 22 all running on the same server!

Host to Host communication - Summary

- Host needs addresses
- MAC Addresses are great but not scalable in the Internet
- Internet Protocol Address solves this by routing
- Layer 4 ports help create finer addressability to the process level

husseinnasser

1.2.3.4

The IP building blocks Understanding the IP Protocol

IP Address

- Layer 3 property
- Can be set automatically or statically
- Network and Host portion
- 4 bytes in IPv4 32 bits

Network vs Host

- a.b.c.d/x (a.b.c.d are integers) x is the network bits and remains are host
- Example 192.168.254.0/24
- The first 24 bits (3 bytes) are network the rest 8 are for host
- This means we can have 2²4 (16777216) networks and each network has 2⁸ (255) hosts
- Also called a subnet

Subnet Mask

- 192.168.254.0/24 is also called a subnet
- The subnet has a mask 255.255.255.0
- Subnet mask is used to determine whether an IP is in the same subnet

Default Gateway

- Most networks consists of hosts and a Default Gateway
- Host A can talk to B directly if both are in the same subnet
- Otherwise A sends it to someone who might know, the gateway
- The Gateway has an IP Address and each host should know its gateway

E.g. Host 192.168.1.3 wants to talk to 192.168.1.2

- 192.168.1.3 applies subnet mask to itself and the destination IP 192.168.1.2
- 255.255.255.0 & 192.168.1.3 = 192.168.1.0
- 255.255.255.0 &
 192.168.1.2 =
 192.168.1.0
- Same subnet ! no need to route

E.g. Host 192.168.1.3 wants to talk to 192.168.2.2

- 192.168.1.3 applies subnet mask to itself and the destination IP 192.168.2.2
- 255.255.255.0 & 192.168.1.3 = 192.168.1.0
- 255.255.255.0 &
 192.168.2.2 =
 192.168.2.0
- Not the subnet ! The packet is sent to the Default Gateway 192.168.1.100

Summary

- IP Address
- Network vs Host
- Subnet and subnet mask
- Default Gateway
The IP Packet Anatomy of the IP Packet

IP Packet

- The IP Packet has headers and data sections
- IP Packet header is 20 bytes (can go up to 60 bytes if options are enabled)
- Data section can go up to 65536

IP Packet to the Backend Engineer

Actual IP Packet

Offsets	Octet				()								1								2						;	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	8 19	20	21 22	23	24	25	26	27	28	29	30	31
0	0		Ver	sion			Iŀ	ΗL				DS	SCP			EC	CN							otal	Leng	jth						
4	32								Ide	ntifica	ation	1							Flage	s				F	- ragr	nent	Offs	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																													
12	96		Source IP Address																													
16	128		Source IP Address Destination IP Address																													
20	160															O	ptior	ns (if	IHL >	> 5	5)											
:	:																															
56	448																															
																		Dat	a													

https://datatracker.ietf.org/doc/html/rfc791 https://en.wikipedia.org/wiki/IPv4

Version - The Protocol version

Offsets	Octet				0								,	1								2							;	3			
Octet	Bit	0	1 2	3	4	5		6	7	3	9 1	0	11	12	13	14	15	5 16	17	18	8 19	20	21 2	2	23	24	25	26	27	28	29	30	31
0	0		Versio	n		I	HL					DSO	CP			EC	CN							Tot	al L	.engi	th						
4	32							ld	entif	cat	ion								Flag	s					Fr	ragm	nent	Offs	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																														
12	96		Source IP Address																														
16	128															Des	stina	ation I	P Ad	ldre	ess												
20	160															0	ptic	ons (if	IHL	> 5	5)												
:	:																																
56	448																																
																		Dat	a														

Internet Header Length - Defines the Options length

Offsets	Octet				()								1								2							3	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	8 19	20	21 2	2	23	24	25	26	27	28	29	30	31
0	0		Ver	sion			IF	łL				DS	SCP			EC	CN							То	tal L	eng	th						
4	32								der	ntifica	atior	ו							Flag	s					F	ragn	nent	Offse	et				
8	64		Time To Live Protocol Header Checksum																														
12	96		Source IP Address																														
16	128		Source IP Address Destination IP Address																														
20	160															O	ptic	ns (if	IHL :	> 5)												
:	:																																
56	448																																
																		Dat	ta														

Total Length - 16 bit Data + header

Offsets	Octet				()								1								2							3	3			
Octet	Bit	0	1	2	3	4	5	6	6 7	8	9	10	11	12	13	14	15	5 16	17	18	19	20	21 2	2	23	24	25	26	27	28	29	30	31
0	0		Ver	sion			١ŀ	ΗL			<u> </u>	DS	SCP			EC	CN							Tot	al L	eng	th						
4	32								Ide	ntifica	atior	۱							Flage	S					F	ragm	nent	Offse	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																														
12	96		Source IP Address																														
16	128		Source IP Address Destination IP Address																														
20	160															O	ptio	ns (if	IHL :	> 5))												
:	:																																
56	448																																
																		Dat	a														

Fragmentation - Jumbo packets

Offsets	Octet				()								1								2							3	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	8 19	20	21	22	23	24	25	26	27	28	29	30	31
0	0		Ver	sion			١ŀ	łL				DS	SCP			EC	CN							Т	otal I	_eng	th						
4	32							I	der	tifica	ation								Flage	S					F	ragn	nent	Offse	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																														
12	96		Time to Live Protocol Header Checksum Source IP Address																														
16	128															Des	tina	tion I	P Ad	ldre	ess												
20	160															0	ptio	ns (if	IHL :	> 5	5)												
:	:																																
56	448																																
																		Dat	a														

Time To Live - How many hops can this packet survive?

Offsets	Octet				()								1								2						;	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26	27	28	29	30	31
0	0		Ve	rsion			⊪	IL				DS	SCP			EC	CN							lotal	Leng	th						
4	32								den	tifica	ation	I							Flage	S				I	Fragr	nent	Offs	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																													
12	96		Time to Live Protocol Header Checksum Source IP Address																													
16	128															Des	tina	tion I	P Ad	dre	SS											
20	160															O	ptio	ns (if	IHL :	> 5)	1											
:	:																															
56	448																															
																		Dat	a													
56	448																	Dat	a				 									

Protocol - What protocol is inside the data section?

Offsets	Octet				()								1								2						;	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	3 19	20	21 22	23	24	25	26	27	28	29	30	31
0	0		Vei	sion			Iŀ	łL				DS	SCP			EC	CN							lotal	Leng	gth						
4	32								der	ntifica	ation	1							Flag	s					-ragr	nent	Offs	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																													
12	96		Time to Live Protocol Header Checksum Source IP Address																													
16	128															Des	tina	tion I	P Ad	ldre	ess											
20	160															O	ptio	ns (if	IHL	> 5)											
:	:																															
56	448																															
																		Dat	a													

Source and Destination IP

Offsets	Octet				0									1								2							3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	3 24	25	26	27	28	29	30	31
0	0		Versi	on			١ŀ	IL				DS	SCP			EC	CN							Tota	Len	gth						
4	32							I	den	tifica	ation)							Flag	s					Frag	men	Offs	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																													
12	96		Source IP Address																													
16	128		Source IP Address Destination IP Address																													
20	160															O	ptio	ns (if	IHL	> 5))											
:	:																															
56	448																															
																		Dat	ta													

Explicit Congestion Notification

Offsets	Octet				()								1								2						;	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	8 19	20	21 22	23	24	25	26	27	28	29	30	31
0	0		Ve	rsion			١ŀ	IL				DS	SCP			EC	CN							lotal	Lenç	jth						
4	32							I	den	tifica	ation	l							Flage	s					- ragr	nent	Offs	et				
8	64		Time To Live Protocol Header Checksum Source IP Address																													
12	96		Time To Live Protocol Header Checksum Source IP Address																													
16	128															Des	tina	ition I	P Ad	ldre	ess											
20	160															O	ptio	ns (if	IHL :	> 5	5)											
:	:																															
56	448																															
																		Dat	a													

Summary

- The IP Packet has headers and data sections
- IP Packet header is 20 bytes (can go up to 60 bytes if options are enabled)
- Data section can go up to 65536
- Packets need to get fragmented if it doesn't fit in a frame

ICMP

Internet Control Message Protocol

ICMP

- Stands for Internet Control Message Protocol
- Designed for informational messages
 - Host unreachable, port unreachable, fragmentation needed
 - Packet expired (infinite loop in routers)
- Uses IP directly
- PING and traceroute use it
- Doesn't require listeners or ports to be opened

ICMP header

Offsets	Octet				(D								1							2	2							3	8			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0				Ту	pe							C	ode										(Chec	ksum	ı						
4	32																Res	t of h	neade	er													

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol https://datatracker.ietf.org/doc/html/rfc792

ICMP

- Some firewalls block ICMP for security reasons
- That is why PING might not work in those cases
- Disabling ICMP also can cause real damage with connection establishment
 - Fragmentation needed
- PING demo

TraceRoute

- Can you identify the entire path your IP Packet takes?
- Clever use of TTL
- Increment TTL slowly and you will get the router IP address for each hop
- Doesn't always work as path changes and ICMP might be blocked

Summary

- ICMP is an IP level protocol used for information messages
- Critical to know if the host is available or port is opened
- Used for PING and TraceRoute
- Can be blocked which can cause problems

ARP

Address Resolution Protocol

Why ARP?

- We need the MAC address to send frames (layer 2)
- Most of the time we know the IP address but not the MAC
- ARP Table is cached IP->Mac mapping

Network Frame

IP : 10.0.0.2 MAC: aa:bc:32:7f:c0:07

IP : 10.0.0.3 MAC: bb:ab:dd:11:22:33 Port: 8080

- IP 10.0.0.2 (2) wants to connect to IP 10.0.0.5 (5)
- Host 2 checks if host 5 is within its subnet, it is.
- Host 2 needs the MAC address of host 5
- Host 2 checks its ARP tables and its not there

- Host 2 sends an ARP request broadcast to all machines in its network
- Who has IP address 10.0.0.5?
- Host 5 replies with dd
- Host 2 updates its ARP Table

- Host 2 sends an ARP request to everybody in the network \bullet
- Who has 10.0.0.1? (A DANGEROUS QUESTION) \bullet
- Gateway reply with ff \bullet
- NAT than kicks in. ullet

Summary

- ARP stands for Address resolution protocol
- We need MAC address to send frames between machines
- Almost always we have the IP address but not the MAC
- Need a lookup protocol that give us the MAC from IP address
- Attacks can be performed on ARP (ARP poisoning)

Routing Example

How IP Packets are routed in Switches and Routers

UDP User Datagram Protocol

UDP

- Stands for User Datagram Protocol
- Layer 4 protocol
- Ability to address processes in a host using ports
- Simple protocol to send and receive data
- Prior communication not required (double edge sword)
- Stateless no knowledge is stored on the host
- 8 byte header Datagram

UDP Use cases

- Video streaming
- VPN
- DNS
- WebRTC

Multiplexing and demultiplexing

- IP target hosts only
- Hosts run many apps each with different requirements
- Ports now identify the "app" or "process"
- Sender multiplexes all its apps into UDP
- Receiver demultiplex UDP datagrams to each app

Source and Destination Port

- App1 on 10.0.0.1 sends data to AppX on 10.0.0.2
- Destination Port = 53
- AppX responds back to App1
- We need Source Port so we know how to send back data
- Source Port = 5555

Summary

- UDP is a simple layer 4 protocol
- Uses ports to address processes
- Stateless

husseinnasser

UDP Datagram The anatomy of the UDP datagram

UDP Datagram

- UDP Header is 8 bytes only (IPv4)
- Datagram slides into an IP packet as "data"
- Port are 16 bit (0 to 65535)

UDP Datagram header

Offsets	Octet				(0								1							2	2							÷	3			
Octet	Bit	_	-		2		-		-			10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		U	1 2 3 4 5 6 7 8 9 Source port																														
0	0		1 2 3 4 5 6 7 8 9 Source port																				De	stina	tion p	oort							
4	32		Source port Length																					(Chec	ksun	n						
																		[Data														

https://www.ietf.org/rfc/rfc768.txt https://en.wikipedia.org/wiki/User Datagram Protocol

Source Port and Destination Port

Offsets	Octet				(0								1							2	2							4	3			
Octet	Bit	0	1	2	٩	Δ	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		<u> </u>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Source port																														
0	0		1 2 3 4 5 6 7 8 9 Source port																					De	stina	tion	oort						
4	32		Source port Length																					(Chec	ksun	n						
			Source port Length																														
																		[Data														

Length & Checksum

Offsets	Octet				(0								1							2	2							;	3			
Octet	Bit	0	1	2	2	Л	5	6	7	Q	٩	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		0	1 2 3 4 5 6 7 8 9 Source port																														
0	0		1 2 3 4 5 6 7 8 9																				De	stina	tion	port							
4	32		Source port																				(Chec	ksun	n							
]	Data														

husseinnasser

UDP Pros and Cons

The power and drawbacks of UDP

UDP Pros

- Simple protocol
- Header size is small so datagrams are small
- Uses less bandwidth
- Stateless
- Consumes less memory (no state stored in the server/client)
- Low latency no handshake , order, retransmission or guaranteed delivery

UDP Cons

- No acknowledgement
- No guarantee delivery
- Connection-less anyone can send data without prior knowledge
- No flow control
- No congestion control
- No ordered packets
- Security can be easily spoofed

husseinnasser

TCP Transmission Control Protocol

TCP

- Stands for Transmission Control Protocol
- Layer 4 protocol
- Ability to address processes in a host using ports
- "Controls" the transmission unlike UDP which is a firehose
- Connection
- Requires handshake
- 20 bytes headers Segment (can go to 60)
- Stateful

TCP Use cases

- Reliable communication
- Remote shell
- Database connections
- Web communications
- Any bidirectional communication

TCP Connection

- Connection is a Layer 5 (session)
- Connection is an agreement between client and server
- Must create a connection to send data
- Connection is identified by 4 properties
 - SourceIP-SourcePort
 - DestinationIP-DestinationPort

TCP Connection

- Can't send data outside of a connection
- Sometimes called socket or file descriptor
- Requires a 3-way TCP handshake
- Segments are sequenced and ordered
- Segments are acknowledged
- Lost segments are retransmitted

Multiplexing and demultiplexing

- IP target hosts only
- Hosts run many apps each with different requirements
- Ports now identify the "app" or "process"
- Sender multiplexes all its apps into TCP connections
- Receiver demultiplex TCP segments to each app based on connection pairs

Connection Establishment

- App1 on 10.0.0.1 want to send data to AppX on 10.0.0.2
- App1 sends SYN to AppX to synchronous sequence numbers
- AppX sends SYN/ACK to synchronous its sequence number
- App1 ACKs AppX SYN.
- Three way handshake

Sending data

- App1 sends data to AppX
- App1 encapsulate the data in a segment and send it
- AppX acknowledges the segment
- Hint: Can App1 send new segment before ack of old segment arrives?

Acknowledgment

- App1 sends segment 1,2 and 3 to AppX
- AppX acknowledge all of them with a single ACK 3

Lost data

- App1 sends segment 1,2 and 3 to AppX
- Seg 3 is lost, AppX acknowledge 3
- App1 resend Seq 3

Closing Connection

- App1 wants to close the connection
- App1 sends FIN, AppX ACK
- AppX sends FIN, App1 ACK
- Four way handshake

Summary

- Stands for Transmission Control Protocol
- Layer 4 protocol
- "Controls" the transmission unlike UDP which is a firehose
- Introduces Connection concept
- Retransmission, acknowledgement, guaranteed delivery
- Stateful, connection has a state

husseinnasser

TCP Segment The anatomy of the TCP Segment

TCP Segment

- TCP segment Header is 20 bytes and can go up to 60 bytes
- TCP segments slides into an IP packet as "data"
- Port are 16 bit (0 to 65535)
- Sequences, Acknowledgment, flow control and more

TCP Segment

Offsets	Octet		Image: Normal System 1 I																														
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0		·			. <u> </u>		S	Sour	ce p	ort						·		·				D	esti	nat	ion	ро	rt		<u> </u>			
4	32	Sequence number																															
8	64		Sequence number Acknowledgment number (if ACK set) Data offset Roserved N/index Size																														
12	96	D	ata	offse	et	Re	serv	/ed	Ν	С	Е	U	Α	Ρ	R	S	FI						١	Vin	do	w S	Size						
							000)	S	W R	C E	R G	C K	S H	S T	Y N	N																
16	128					<u> </u>		(Che	cksu	m						<u> </u>	\square			ι	Jrg	ent	poi	nte	r (if	ŪF	RG s	set)				
20	160						(Optic	ons	(if de	ata o	ffset	t > 5	. Pa	ddec	l at t	he e	end	wit	h "0)" bi	its i	f ne	ces	sai	ry.)							
:	:																																
60	480																																

https://en.wikipedia.org/wiki/Transmission_Control_Protocol https://datatracker.ietf.org/doc/html/rfc793

Ports

Offsets	Octet					0												2	2							3	3						
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0							ç	Sour	ce p	ort												D	est	ina	tior	n po	rt					
4	32		Sequence number Acknowledgment number (if ACK set)																														
8	64																																
12	96	D	ata	offse	ət	Re	serv	′ed	Ν	С	Е	U	Α	Ρ	R	S	FI						,	Wir	ndo	w S	Size	:					
							000)	S	W	C	R	С	S	S	Y	N																
										R	E	G	ĸ	н		N																	
16	128								Che	cksu	m										ι	Jrg	ent	poi	nte	er (i	f UF	RG	set))			
20	160						(Optio	ons	(if da	nta o	ffset	t > 5	. Pa	ddeo	l at t	the e	end	wit	h "C)" bi	ts i	f ne	eces	ssa	ry.))						
:	:																																
60	480																																

Sequences and ACKs

Offsets	Octet	O I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>															;																
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0		<u> </u>		<u> </u>	<u> </u>	<u> </u>		Sour	ce p	ort								<u>. </u>	·	. <u> </u>		D	est	ina	tion	ро	rt		<u> </u>	<u> </u>		
4	32	Sequence number Acknowledgment number (if ACK set)																															
8	64		Acknowledgment number (if ACK set)																														
12	96	Da	ata d	offse	et	Re	serv	ed	Ν	С	Е	U	A	Р	R	S	FI							Wir	ndo	w S	Size						
						C	000		S	W	C	R	C	S	S	Y	N																
										R	E	G	ĸ	H		N																	
16	128							1	Che	cksu	Im										ĺ	Urg	ent	ро	inte	er (ii	fUF	RG s	set)				
20	160						C	Optio	ons	(if de	ata o	ffset	t > 5	. Pa	ddec	l at t	he e	end	wit	h "()" b	its i	fne	ece	ssa	ry.)							
:	:																																
60	480																																

Flow Control Window Size

Offsets	Octet	0 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 V																3															
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0					<u>. </u>			Sour	ce p	ort	<u> </u>							<u> </u>				D	esti	ina	tion	ро	rt		:			
4	32	Acknowledgment number (if ACK set)																															
8	64		Sequence number Acknowledgment number (if ACK set) Data offect Reconved Note offect Reconved																														
12	96	D	ata	offse	et	Re	serv	/ed	Ν	С	Е	U	А	Ρ	R	S	FI						١	Nir	ndo	w S	Size						
							000)	S	R R	C F	RG	к С	S н	S т	Y N	N																
						<u> </u>																											
16	128							1	Che	cksu	m										l	Jrg	ent	poi	nte	er (ii	t UF	۲G s	set)				
20	160						(Optio	ons	(if de	ata o	ffset	> 5	. Pa	ddec	l at t	he e	end	witl	h "C)" bi	its i	f ne	ces	ssa	ry.)							
:	:																																
60	480																																

9 bit flags

Offsets	Octet		0 1															2							3	3							
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0			·			-	Ś	Sour	ce p	ort		-	-			·						C)est	lina	tior	n po	rt	:				
4	32		Sequence number Acknowledgment number (if ACK set)																														
8	64		Sequence number Acknowledgment number (if ACK set) Data offset Reserved N C E U A P R S F Window Size																														
12	96	D	Acknowledgment number (if ACK set) Data offset Reserved N C E U A P R S F Window Size																														
							000)	S	W	С	R	С	S	S	Y	I.																
										R	E	G	K	н	Т	Ν	N																
16	128								Che	cksu	Im											Urg	ent	ро	inte	er (i	fUF	RG	set))			
20	160						(Optio	ons	(if de	ata o	offsei	t > 5	. Pa	ddec	l at f	he e	end	wit	h "C)" b	oits i	if ne	ece	ssa	ıry.)							
:	:																																
60	480																																

Maximum Segment Size

- Segment Size depends the MTU of the network
- Usually 512 bytes can go up to 1460
- Default MTU in the Internet is 1500 (results in MSS 1460)
- Jumbo frames MTU goes to 9000 or more
- MSS can be larger in jumbo frames cases

husseinnasser

Flow Control

How much the receiver can handle?

Flow Control

- A want to send 10 segments to B
- A sends segment 1 to B
- B acknowledges segment 1
- A sends segment 2 to B
- B acknowledges segment 2
- VERY SLOW!

Flow Control

- A can send multiple segments and B can acknowledge all in 1 ACK
- The question is ... how much A can send?
- This is called flow control

Flow Control

- When TCP segments arrive they are put in receiver's buffer
- If we kept sending data the receiver will be overwhelmed
- Segments will be dropped
- Solution? Let the sender know how much you can handle

Flow Control Window Size (Receiver Window)

Offsets	Octet					0							•								2								3				
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0							5	Sour	ce p	ort	·											D	esti	inat	ion	ро	rt					
4	32	Acknowledgment number (if ACK set)																															
8	64		Sequence number Acknowledgment number (if ACK set) Deta offset Reserved N C E L C E																														
12	96	D	ata	offse	et	Re	serv	ed	Ν	С	E	U	A	Р	R	S	FI						١	Win	Idov	w S	ize						
							000)	S	W R	C E	R G	C K	S H	S T	Y N	N																
16	128					<u> </u>			Che	cksı	Im	<u> </u>	<u> </u>				<u> </u>				ι	Jrge	ent	poi	nte	r (if	UF	RG s	set)				
20	160						C	Optio	ons	(if da	ata c	offsei	t > 5	. Pa	ddeo	lati	the e	end	with	า "0	" bi	ts if	f ne	ces	ssa	ry.)							
:	:																																
60	480																																

Window Size (Receiver Window) RWND

- 16 bit Up to 64KB
- Updated with each acknowledgment
- Tells the sender how much to send before waiting for ACK
- Receiver can decide to decrease the Window Size (out of memory) more important stuff

Sliding Window

- Can't keep waiting for receiver to acknowledge all segments
- Whatever gets acknowledge moves
- We "slide" the window
- Sender maintains the sliding window for the receiver

Window Scaling

- 64 KB is too small
- We can't increase the bits on the segment
- Meet Window Scaling factor (0-14)
- Window Size can go up to 1GB ((2^16-1) x 2^14)
- Only exchanged during the handshake

	В	
-		

1	2	3		

Summary

- Receiver host has a limit
- We need to let the sender know how much it can send
- Receiver Window is in the segment
- Sender maintains the Sliding Window to know how much it can send
- Window Scaling can increase that

husseinnasser

Congestion Control

How much the network can handle?

Congestion Control

- The receiver might handle the load but the middle boxes might not
- The routers in the middle have limit
- We don't want to congest the network with data
- We need to avoid congestion
- A new window: Congestion Window (CWND)

Two Congestion algorithms

- TCP Slow Start
 - Start slow goes fast!
 - CWND + 1 MSS after each ACK
- Congestion Avoidance
 - Once Slow start reaches its threshold this kicks in
 - CWND + 1 MSS after complete RTT
- CWND must not exceeds RWND

Slow Start

- CWND starts with 1 MSS (or more)
- Send 1 Segment and waits for ACK
- With EACH ACK received CWND is incremented by 1 MSS
- Until we reach slow start threshold (ssthresh) we switch to congestion avoidance algorithm

Congestion Avoidance

- Send CWND worth of Segments and waits for ACK
- Only when ALL segments are ACKed add UP to one MSS to CWND
- Precisely CWND = CWND + MSS*MSS/CWND

Congestion Detection

- The moment we get timeouts, dup ACKs or packet drops
- The slow start threshold reduced to the half of whatever unacknowledged data is sent (roughly CWND/2 if all CWND worth of data is unacknowledged)
- The CWND is reset to 1 and we start over.
- Min slow start threshold is 2*MSS

Congestion Notification

- We don't want routers dropping packets
- Can Routers let us know when congestion hit?
- Meet ECN (Explicit Congestion Notification)
- Routers and middle boxes can tag IP packets with ECN
- The receiver will copy this bit back to the sender
- ECN is IP Header bit
- So Routers don't drop packets just let me know you are reaching your limit

Summary

- While the receiver may handle large data middle boxes might not
- Middle routers buffers may fill up
- Need to control the congestion in the network
- Sender can send segments up to CWND or RWND without ACK
- Isn't normally a problem in hosts connected directly (LAN)

husseinnasser

Congestion Detection Slow Start vs Congestion Avoidance

Two Congestion algorithms

- TCP Slow Start
 - Start slow goes fast!
 - CWND + 1 MSS after each ACK
- Congestion Avoidance
 - Once Slow start reaches its threshold this kicks in
 - CWND + 1 MSS after complete RTT
- CWND must not exceeds RWND

Congestion Detection

- The moment we get timeouts, dup ACKs or packet drops
- The slow start threshold reduced to the half of whatever unacknowledged data is sent (roughly CWND/2 if all CWND worth of data is unacknowledged)
- The CWND is reset to 1 and we start over.
- Min slow start threshold is 2*MSS

Slow start vs Congestion Avoidance

Network Address Translation

How the WAN sees your internal devices

NAT

- IPv4 is limited only 4 billion
- Private vs Public IP Address
- E.g. 192.168.x.x , 10.0.0.x is private not routable in the Internet
- Internal hosts can be assigned private addresses
- Only your router need public IP address
- Router need to translate requests

NAT Applications

- Private to Public translations
 - So we don't run out IPv4
- Port forwarding
 - Add a NAT entry in the router to forward packets to 80 to a machine in your LAN
 - No need to have root access to listen on port 80 on your device
 - Expose your local web server publically
- Layer 4 Load Balancing
 - <u>HAProxy NAT Mode</u> Your load balancer is your gateway
 - Clients send a request to a bogus service IP
 - Router intercepts that packet and replaces the service IP with a destination server
 - Layer 4 reverse proxying

Summary

- IPv4 is limited only 4 billion
- Need to translate private to public
- Port forward/load balancing

husseinnasser

TCP Connection States

Stateful protocol must have states

TCP Connection States

- TCP is a stateful protocol
- Both client and server need to maintain all sorts of state
- Window sizes, sequences and the state of the connection
- The connection goes through many states

husseinnasser

TCP Pros and Cons

The power and drawbacks of TCP

TCP Pros

- Guarantee delivery
- No one can send data without prior knowledge
- Flow Control and Congestion Control
- Ordered Packets no corruption or app level work
- Secure and can't be easily spoofed

TCP Cons

- Large header overhead compared to UDP
- More bandwidth
- Stateful consumes memory on server and client
- Considered high latency for certain workloads (Slow start/ congestion/ acks)
- Does too much at a low level (hence QUIC)
 - Single connection to send multiple streams of data (HTTP requests)
 - Stream 1 has nothing to do with Stream 2
 - Both Stream 1 and Stream 2 packets must arrive
- TCP Meltdown
 - Not a good candidate for VPN

Overview of Popular Networking Protocols
DNS Domain Name System

Why DNS

www.husseinnasser.com

- People can't remember IPs
- A domain is a text points to an IP or a collection of IPs
- Additional layer of abstraction is good
- IP can change while the domain remain
- We can serve the closest IP to a client requesting the same domain
- Load balancing

DNS

- A new addressing system means we need a mapping. Meet DNS
- If you have an IP and you need the MAC, we use ARP
- If you have the name and you need the IP, we use DNS
- Built on top of UDP
- Port 53
- Many records (MX, TXT, A, CNAME)

Google.com (142.251.40.46)

How DNS works

- DNS resolver frontend and cache
- ROOT Server Hosts IPs of TLDs
- Top level domain server Hosts IPs of the ANS
- Authoritative Name server Hosts the IP of the target server

ANS

Resolver

DNS Packet

bits	0	4	8	161	71819	2	1	25	2	28	32
	Version IHL Type of Service						Total Length				
		0 D M Fragment Offset]				
	Time To Live Protocol				Header Checksum] IP header		
	Source Address										
	Destination Address										
		Destination Port					UDP				
	Length				Checksum					header	
		0 R	Орсо	de	Flag	s	Z	RCODE]		
		ANCOUNT					DNS header				
		ARCOUNT]				

Source: <u>https://www.usenix.org/system/files/sec20-zheng.pdf</u> RFC: <u>https://datatracker.ietf.org/doc/html/rfc1035</u>

Notes about DNS

- Why so many layers?
- DNS is not encrypted by default.
- Many attacks against DNS (DNS hijacking/DNS poisoning)
- DoT / DoH attempts to address this

Example

• Let us use nslookup to look up some DNS

TLS

Transport Layer Security

TLS

- Vanilla HTTP
- HTTPS
- TLS 1.2 Handshake
- Diffie Hellman
- TLS 1.3 Improvements

Why TLS

- We encrypt with symmetric key algorithms
- We need to exchange the symmetric key
- Key exchange uses asymmetric key (PKI)
- Authenticate the server
- Extensions (SNI, preshared, 0RTT)

Diffie Hellman

Public/ Unbreakable /can be shared g^x % n

Public/ Unbreakable /can be shared g^y % n

(g^x % n)^y = g^xy % n (g^y % n)^x = g^xy % n

.....

TLS Summary

- Vanilla HTTP
- HTTPS
- TLS 1.2 Handshake (two round trips)
- Diffie Hellman
- TLS 1.3 Improvements (one round trip can be zero)

HTTP

Hypertext Transfer Protocol

SSH

Secure Shell

Networking Concepts for Effective Backend Applications

MSS/MTU and Path MTU

How large the packet can get

Overview

- TCP layer 4 unit is segment
- The segment slides into an IP Packet in layer 3
- The IP Packet now has the segment + headers
- The IP Packet slides into a layer 2 frame
- The frame has a fixed size based on the networking configuration.
- The size of the frame determines the size of the segment

Hardware MTU

- Maximum Transmission Unit (MTU) is the size of the frame
- It is a network interface property default 1500
- Some networks have jumbo frames up to 9000 bytes
- Are there are networks with larger MTUs?

Wi-Fi	TCP/IP	DNS	WINS	802.1X	Proxies	Hardware
	MAC	Address				
	c	configure	: Auton	natically		
		мти	: Stand	ard (1500)		

IP Packets and MTU

- The IP MTU usually equals the Hardware MTU
- One IP packet "should" fit a single frame
- Unless IP fragmentation is in place
- Larger IP Packets will be fragmented into multiple frames

MSS

- Maximum Segment size is determined based on MTU
- Segment must fit in an IP packet which "should" fit in a frame
- MSS = MTU IP Headers TCP Headers
- MSS = 1500 20 20 = 1460
- If you are sending 1460 bytes exactly that will fit nicely into a single MSS
- Which fits in a single frame

Credit Cisco

https://learningnetwork.cisco.com/s/question/0D53i00000Kt7CXCAZ/mtu-vs-pdu

Path MTU Discovery (PMTUD)

- MTU is network interface property each host can have different value
- You really need to use the smallest MTU in the network
- Path MTU help determine the MTU in the network path
- Client sends a IP packet with its MTU with a DF flag
- The host that their MTU is smaller will have to fragment but can't
- The host sends back an ICMP message fragmentation needed which will lower the MTU

Summary

- MTU is the maximum transmission unit on the device
- MSS is the maximum segment size at layer 4
- If you can fit more data into a single segment you lower latency
- It lowers overhead from headers and processing
- Path MTU can discover the network lowest MTU with ICMP
- Flow control/congestion control still allows sending multiple segments without ack

Nagle's algorithm Delay in the client side

Nigel Algorithm

- In the telnet days sending a single byte in a segment is a waste
- Combine small segments and send them in a single one
- The client can wait for a full MSS before sending the segment
- No wasted 40 bytes header (IP + TCP) for few bytes of data

Nagle's algorithm

- Assume MSS = 1460, A sends 500 bytes
- 500 < 1460 client waits to fill the segment
- A sends 960 bytes, segment fills and send
- If there isn't anything to ACK data will be immediately sent

Problem with Nagle's algorithm

- Sending large data causes delay
- A want to send 5000 bytes on 1460 MSS
- 3 full segments of 1460 with 620 bytes
- 4th segment is not sent!
- 4th not full segment are only sent when an ACK is received

Disabling Nagle's algorithm

- Most clients today disable Nagle's algorithm
- I rather get performance than small bandwidth
- TCP_NODELAY
- Curl disabled this back in 2016 by default because TLS handshake was slowed down
- https://github.com/curl/curl/commit/4732ca5724072f132876f520c8f02c7c5b654d9

/ CURLOPT_TCP_NODELAY: now e	enabled by default
------------------------------	--------------------

After a few wasted hours hunting down the reason for slowness during a TLS handshake that turned out to be because of TCP_NODELAY not being set, I think we have enough motivation to toggle the default for this option. We now enable TCP_NODELAY by default and allow applications to switch it off.

This also makes --tcp-nodelay unnecessary, but --no-tcp-nodelay can be used to disable it.

Thanks-to: Tim Rühsen Bug: https://curl.haxx.se/mail/lib-2016-06/0143.html

```
ື່ master
ເງັ tiny-curl-7_72_0 .... curl-7_50_2
```

🔹 bagder committed on Aug 4, 2016

Delayed Acknowledgement

Less packets are good but performance is better

Delayed Acknowledgment algorithm

- Waste to acknowledge segments right away
- We can wait little more to receive more segment and ack once

Problem with delayed ACK

- Causes delays in some clients that may lead to timeout and retransmission
- Noticeable performance degradation
- Combined with Nagle's algorithm can lead to 400ms delays!
- Each party is waiting on each other

Delav	A	1460	1460	1460	D	elay
	620		400 ms in	some cases		B
			ACK			
V		<	620]		ļ

Disabling Delayed acknowledgement algorithm

- Disable delayed ack algorithm can be done with TCP_QUICKACK option
- Segments will be acknowledged "quicker"

husseinnasser

The Cost of Connections

Understanding the cost of connections

Connection establishment is costly

- TCP three way handshake
- The further apart the peers, the slower it is to send segments
- Slow start keeps the connection from reaching its potential right away
- Congestion control and flow control limit that further
- Delayed and Nigel algorithm can further slow down
- Destroying the connection is also expensive

Connection Pooling

- Most implementation database backends and reverse proxies use pooling
- Establish a bunch of TCP connection to the backend and keep them running!
- Any request that comes to the backend use an already opened connection
- This way your connections will be "warm" and slow start would have already kicked in
- Don't close the connection unless you absolutely don't need it

Eager vs Lazy Loading

- Depending on what paradigm you take you can save on resources
- Eager loading -> Load everything and keep it ready
 - Start up is slow but requests will be served immediately
 - Some apps send warm up data to kick in the slow start but be careful of bandwidth and scalability
- Lazy Loading -> only load things on demand
 - Start up is fast but requests will suffer initially

husseinnasser

TCP Fast Open

Wait I can send data during the handshake?

Handshake is Slow

- We know it, the handshake is slow
- I already know the server I have established a connection prior
- Can we use a predetermined token to send data immediately during the handshake?
- Meet TCP Fast open

TCP Fast Open (TFO)

- Client and Server establishes connection 1, server sends an encrypted cookie
- Client stores the TFO cookie.
- Client want to create another connection
- Client sends SYN, data and TFO cookie in TCP options
- Server authenticate the cookie and sends response + SYN/ACK

TCP Fast Open (TFO)

- TFO is enabled by default in linux 3.13 >
- You can enable TFO in curl --tcp-fastopen
- Goes without saying, you still get TCP Slow start with TCP Fast open
- You can take advantage of this feature to send early data

husseinnasser

Listening Server

Understanding what to listen on

Listening

- You create a server by listening on a port on a specific ip address
- Your machine might have multiple interfaces with multiple IP address
- listen(127.0.0.1, 8080) -> listens on the local host ipv4 interface on port 8080
- listen(::1, 8080) -> listens on localhost ipv6 interface on port 8080
- listen(192.168.1.2, 8080) -> listens on 192.168.1.2 on port 8080
- listen(0.0.0, 8080) -> listens on all interfaces on port 8080 (can be dangerous)

Listening

- You can only have one process in a host listening on IP/Port
- No two processes can listen on the same port
- P1->Listen(127.0.0.1,8080)
- P2->Listen(127.0.0.1,8080) error

There is always an exception

- There is a configuration that allows more than one process to listen on the same port
- SO_PORTREUSE
- Operating systems balance segments among processes
- OS creates a hash source ip/source port/dest ip/ dest port
- Guarantees always go to the same process if the pair match

husseinnasser

TCP HOL Head of line blocking

TCP head of line blocking

- TCP orders packets in the order they are sent
- The segments are not acknowledged or delivered to the app until they are in order
- This is great! But what if multiple clients are using the same connection

TCP head of line blocking

- HTTP requests may use the same connection to send multiple requests
- Request 1 is segments 1,2
- Request 2 is segments 3,4
- Segments 2,3,4 arrive but 1 is lost?
- Request 2 technically was delivered but TCP is blocking it
- Huge latency in apps, big problem in HTTP/2 with streams
- QUIC solves this

Blocked! As one segment is missing

Layer 4 vs Layer 7 Load balancers

A fundamental component of backend networking

Agenda

- Layer 4 vs Layer 7
- Load Balancer
- Layer 4 Load Balancer (pros and cons)
- Layer 7 Load Balancer (pros and cons)

Backend server 2

Layer 4 Load Balancer

44.1.1.1

Backend server 2 44.1.1.4

connections go to that server

^{44.1.1.4}

^{44.1.1.4}

Layer 4 Load Balancer (Pros and Cons)

Pros

- Simpler load balancing
- Efficient (no data lookup)
- More secure
- Works with any protocol
- One TCP connection (NAT)

Cons

- No smart load balancing
- NA microservices
- Sticky per connection
- No caching
- Protocol unaware (can be dangerous) bypass rules

Layer 7 Load Balancer

44.1.1.1

be one or more segments

^{44.1.1.4}

^{44.1.1.4}

^{44.1.1.4}
Layer 7 Load Balancer (Pros and Cons)

Pros

- Smart load balancing
- Caching
- Great for microservices
- API Gateway logic
- Authentication

Cons

- Expensive (looks at data)
- Decrypts (terminates TLS)
- Two TCP Connections
- Must share TLS certificate
- Needs to buffer
- Needs to understand protocol

Summary

- Layer 4 vs Layer 7
- Load Balancer
- Layer 4 Load Balancer (pros and cons)
- Layer 7 Load Balancer (pros and cons)