
Fundamentals of
Networking for Effective
Backend Applications

Understanding the first principles of networking to
build low latency and high throughput backends

husseinnasser

Introduction

husseinnasser

Introduction

● Welcome
● Who this course is for?
● Course Outline

husseinnasser

Fundamentals of
Networking

The first principles of computer networking

husseinnasser

Client-Server Architecture
A revolution in networking

Client-Server Architecture

● Machines are expensive, applications are complex
● Seperate the application into two components
● Expensive workload can be done on the server
● Clients call servers to perform expensive tasks
● Remote procedure call (RPC) was born

Client-Server Architecture Benefits

● Servers have beefy hardware
● Clients have commodity hardware
● Clients can still perform lightweight tasks
● Clients no longer require dependencies
● However, we need a communication model

OSI Model
Open Systems Interconnection model

husseinnasser

Why do we need a communication model?

● Agnostic applications
○ Without a standard model, your application must have knowledge of the

underlying network medium
○ Imagine if you have to author different version of your apps so that it

works on wifi vs ethernet vs LTE vs fiber
● Network Equipment Management

○ Without a standard model, upgrading network equipments becomes difficult
● Decoupled Innovation

○ Innovations can be done in each layer separately without affecting the rest of the models

husseinnasser

What is the OSI Model?

● 7 Layers each describe a specific networking component
● Layer 7 - Application - HTTP/FTP/gRPC
● Layer 6 - Presentation - Encoding, Serialization
● Layer 5 - Session - Connection establishment, TLS
● Layer 4 - Transport - UDP/TCP
● Layer 3 - Network - IP
● Layer 2 - Data link - Frames, Mac address Ethernet
● Layer 1 - Physical - Electric signals, fiber or radio waves

husseinnasser

The OSI Layers - an Example (Sender)

● Example sending a POST request to an HTTPS webpage
● Layer 7 - Application

○ POST request with JSON data to HTTPS server
● Layer 6 - Presentation

○ Serialize JSON to flat byte strings
● Layer 5 - Session

○ Request to establish TCP connection/TLS
● Layer 4 - Transport

○ Sends SYN request target port 443
● Layer 3 - Network

○ SYN is placed an IP packet(s) and adds the source/dest IPs
● Layer 2 - Data link

○ Each packet goes into a single frame and adds the source/dest MAC addresses
● Layer 1 - Physical

○ Each frame becomes string of bits which converted into either a radio signal (wifi), electric signal (ethernet), or light (fiber)
● Take it with a grain of salt, it's not always cut and dry

husseinnasser

The OSI Layers - an Example (Receiver)

● Receiver computer receives the POST request the other way around
● Layer 1 - Physical

○ Radio, electric or light is received and converted into digital bits
● Layer 2 - Data link

○ The bits from Layer 1 is assembled into frames
● Layer 3 - Network

○ The frames from layer 2 are assembled into IP packet.
● Layer 4 - Transport

○ The IP packets from layer 3 are assembled into TCP segments
○ Deals with Congestion control/flow control/retransmission in case of TCP
○ If Segment is SYN we don’t need to go further into more layers as we are still processing the connection request

● Layer 5 - Session
○ The connection session is established or identified
○ We only arrive at this layer when necessary (three way handshake is done)

● Layer 6 - Presentation
○ Deserialize flat byte strings back to JSON for the app to consume

● Layer 7 - Application
○ Application understands the JSON POST request and your express json or apache request receive event is triggered

● Take it with a grain of salt, it's not always cut and dry

husseinnasser

Application

Presentation

Session

Transport

Network

Data Link

Physical

Client

Application

Presentation

Session

Transport

Network

Data Link

Physical

Server

Client sends an HTTPS POST request

Frame

Packet

Segment

Client Server

DPORTSPORT

DIPSIP

DMACSMAC

DPORTSPORT

DIPSIP

DMACSMAC

Application

Presentation

Session

Transport

Network

Data Link

Physical

Client

Application

Presentation

Session

Transport

Network

Data Link

Physical

Server

Across networks

Switch

Data Link

Physical

Router

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Client

Application

Presentation

Session

Transport

Network

Data Link

Physical

Backend
Server

Across networks

Layer 4
Proxy,

Firewall

Data Link

Physical

Layer 7 Load
Balancer/CDN

Network

Data Link

Physical

Network

Application

Presentation

Session

TransportTransport

The shortcomings of the OSI Model

● OSI Model has too many layers which can be hard to comprehend

● Hard to argue about which layer does what

● Simpler to deal with Layers 5-6-7 as just one layer, application

● TCP/IP Model does just that

husseinnasser

TCP/IP Model

● Much simpler than OSI just 4 layers
● Application (Layer 5, 6 and 7)
● Transport (Layer 4)
● Internet (Layer 3)
● Data link (Layer 2)
● Physical layer is not officially covered in the model

husseinnasser

OSI Model Summary

● Why do we need a communication model?
● What is the OSI Model?
● Example
● Each device in the network doesn’t have to map the entire 7 layers
● TCP/IP is simpler model

husseinnasser

Host to Host communication
How messages are sent between hosts

husseinnasser

BA

Host to Host communication

● I need to send a message from host A to host B
● Usually a request to do something on host B (RPC)
● Each host network card has a unique Media Access Control address (MAC)
● E.g. 00:00:5e:00:53:af

husseinnasser

BA

00:00:5e:00:53:aa 00:00:3a:12:31:0b

Host to Host communication

● A sends a message to B specifying the MAC address
● Everyone in the network will “get” the message but only B will accept it

husseinnasser

B

A

C

D

Host to Host communication

● Imagine millions of machines?
● We need a way to eliminate the need to send it to everyone
● The address needs to get better
● We need routability, meet the IP Address

husseinnasser

Host to Host communication

● The IP Address is built in two parts
● One part to identify the network, the other is the host
● We use the network portion to eliminate many networks
● The host part is used to find the host
● Still needs MAC addresses!

husseinnasser

Host A on network N1 wants to talk to Host B on network N2

A

B

C

A

B

C

N1 N2

Host 192.168.1.3 wants to talk to 192.168.2.2

192.168.1.0/24 192.168.2.0/24

192.168.1.3

192.168.1.2

192.168.1.1

192.168.2.3

192.168.2.2

192.168.2.1

But my host have many apps!

● It's not enough just to address the host
● The host is runnings many apps each with different requirements
● Meet ports
● You can send an HTTP request on port 80, a DNS request on port 53 and an

SSH request on port 22 all running on the same server!

husseinnasser

Host to Host communication - Summary

● Host needs addresses
● MAC Addresses are great but not scalable in the Internet
● Internet Protocol Address solves this by routing
● Layer 4 ports help create finer addressability to the process level

husseinnasser

The IP building blocks
Understanding the IP Protocol

husseinnasser

1.2.3.4

IP Address

● Layer 3 property
● Can be set automatically or statically
● Network and Host portion
● 4 bytes in IPv4 - 32 bits

husseinnasser

Network vs Host

● a.b.c.d/x (a.b.c.d are integers) x is the network bits and remains are host
● Example 192.168.254.0/24
● The first 24 bits (3 bytes) are network the rest 8 are for host
● This means we can have 2^24 (16777216) networks and each network has

2^8 (255) hosts
● Also called a subnet

husseinnasser

Subnet Mask

● 192.168.254.0/24 is also called a subnet
● The subnet has a mask 255.255.255.0
● Subnet mask is used to determine whether an IP is in the same subnet

husseinnasser

Default Gateway

● Most networks consists of hosts and a Default Gateway
● Host A can talk to B directly if both are in the same subnet
● Otherwise A sends it to someone who might know, the gateway
● The Gateway has an IP Address and each host should know its gateway

husseinnasser

E.g. Host 192.168.1.3 wants to talk to 192.168.1.2

192.168.1.0/24 192.168.2.0/24

192.168.1.3

192.168.1.2

192.168.1.1

192.168.2.3

192.168.2.2

192.168.2.1

● 192.168.1.3 applies subnet
mask to itself and the
destination IP 192.168.1.2

● 255.255.255.0 &
192.168.1.3 =
192.168.1.0

● 255.255.255.0 &
192.168.1.2 =
192.168.1.0

● Same subnet ! no need to
route

E.g. Host 192.168.1.3 wants to talk to 192.168.2.2

192.168.1.0/24 192.168.2.0/24

192.168.1.3

192.168.1.2

192.168.1.1

192.168.2.3

192.168.2.2

192.168.2.1

● 192.168.1.3 applies subnet
mask to itself and the
destination IP 192.168.2.2

● 255.255.255.0 &
192.168.1.3 =
192.168.1.0

● 255.255.255.0 &
192.168.2.2 =
192.168.2.0

● Not the subnet ! The packet
is sent to the Default
Gateway 192.168.1.100

192.168.2.100

192.168.1.100

Summary

● IP Address
● Network vs Host
● Subnet and subnet mask
● Default Gateway

husseinnasser

The IP Packet
Anatomy of the IP Packet

husseinnasser

IP Packet

● The IP Packet has headers and data sections
● IP Packet header is 20 bytes (can go up to 60 bytes if options are enabled)
● Data section can go up to 65536

husseinnasser

IP Packet to the Backend Engineer

husseinnasser

Source IP Address Data Destination IP Address

Actual IP Packet

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://datatracker.ietf.org/doc/html/rfc791
https://en.wikipedia.org/wiki/IPv4

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options
https://datatracker.ietf.org/doc/html/rfc791
https://en.wikipedia.org/wiki/IPv4

Version - The Protocol version

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Internet Header Length - Defines the Options length

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Total Length - 16 bit Data + header

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Fragmentation - Jumbo packets

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Time To Live - How many hops can this packet survive?

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Protocol - What protocol is inside the data section?

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Source and Destination IP

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Explicit Congestion Notification

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Version IHL DSCP ECN Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160 Options (if IHL > 5)

⋮ ⋮

56 448

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/IPv4#Version
https://en.wikipedia.org/wiki/IPv4#IHL
https://en.wikipedia.org/wiki/IPv4#DSCP
https://en.wikipedia.org/wiki/IPv4#ECN
https://en.wikipedia.org/wiki/IPv4#Total_Length
https://en.wikipedia.org/wiki/IPv4#Identification
https://en.wikipedia.org/wiki/IPv4#Flags
https://en.wikipedia.org/wiki/IPv4#Fragment_offset
https://en.wikipedia.org/wiki/IPv4#TTL
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/IPv4#Header_checksum
https://en.wikipedia.org/wiki/IPv4#Source_address
https://en.wikipedia.org/wiki/IPv4#Destination_address
https://en.wikipedia.org/wiki/IPv4#Options

Summary

● The IP Packet has headers and data sections
● IP Packet header is 20 bytes (can go up to 60 bytes if options are enabled)
● Data section can go up to 65536
● Packets need to get fragmented if it doesn’t fit in a frame

husseinnasser

ICMP
Internet Control Message Protocol

husseinnasser

ICMP

● Stands for Internet Control Message Protocol
● Designed for informational messages

○ Host unreachable, port unreachable, fragmentation needed
○ Packet expired (infinite loop in routers)

● Uses IP directly
● PING and traceroute use it
● Doesn’t require listeners or ports to be opened

husseinnasser

ICMP header

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Type Code Checksum

4 32 Rest of header

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://datatracker.ietf.org/doc/html/rfc792

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#header_type
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#header_code
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#header_checksum
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol#header_rest
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://datatracker.ietf.org/doc/html/rfc792

ICMP

● Some firewalls block ICMP for security reasons
● That is why PING might not work in those cases
● Disabling ICMP also can cause real damage with connection establishment

○ Fragmentation needed

● PING demo

husseinnasser

Ping
husseinnasser

192.168.1.3

192.168.10.3

192.168.1.3 TTL100 ICMP echo
request 192.168.10.3

192.168.10.100

192.168.5.100

192.168.3.100

192.168.1.100
192.168.1.3 TTL96 ICMP echo

request 192.168.10.3

192.168.10.3 TTL100 ICMP echo
reply 192.168.1.3

192.168.10.3 TTL96 ICMP echo
reply 192.168.1.3

Ping - unreachable
husseinnasser

192.168.1.3

192.168.10.3

192.168.1.3 TTL3 ICMP echo
request 192.168.10.3

192.168.10.100

192.168.5.100

192.168.3.100

192.168.1.100

192.168.1.3 TTL0 ICMP echo
request 192.168.10.3

192.168.5.100 TTL100 ICMP dest
unreachable 192.168.1.3

192.168.5.100 TTL96 ICMP echo
reply 192.168.1.3

TraceRoute

● Can you identify the entire path your IP Packet takes?
● Clever use of TTL
● Increment TTL slowly and you will get the router IP address for each hop
● Doesn’t always work as path changes and ICMP might be blocked

husseinnasser

Traceroute
husseinnasser

192.168.1.3

192.168.10.3

192.168.1.3 TTL1 ICMP echo
request 192.168.10.3

192.168.10.100

192.168.5.100

192.168.3.100

192.168.1.100

192.168.1.100 ICMP dest unreach. 192.168.1.3

192.168.1.3 TTL2 ICMP echo
request 192.168.10.3

192.168.3.100 ICMP dest unreach. 192.168.1.3

192.168.1.3 TTL3 ICMP echo
request

192.168.10.3

192.168.5.100 ICMP dest unreach. 192.168.1.3

192.168.1.3 TTL4 ICMP echo
request 192.168.10.3

192.168.10.100 ICMP dest unreach 192.168.1.3

192.168.1.3 TTL5 ICMP echo
request 192.168.10.3

192.168.10.3 ICMP Echo reply 192.168.1.3

Summary

● ICMP is an IP level protocol used for information messages
● Critical to know if the host is available or port is opened
● Used for PING and TraceRoute
● Can be blocked which can cause problems

husseinnasser

ARP
Address Resolution Protocol

husseinnasser

Why ARP?

● We need the MAC address to send frames (layer 2)

● Most of the time we know the IP address but not the MAC

● ARP Table is cached IP->Mac mapping

Network Frame

aa:bc:32:7f:c0:07 GET / bb:ab:dd:11:22:3310.0.0.310.0.0.2

IP : 10.0.0.3
MAC: bb:ab:dd:11:22:33
Port: 8080

IP : 10.0.0.2
MAC: aa:bc:32:7f:c0:07

80802312

aa GET / 3 bb2

IP : 2
GW : 1
MAC: aa

EXIP : 122.1.2.4
IP : 10.0.0.1 (1)
MAC: ff

IP : 3
GW : 1
MAC: bb

IP : 4
GW : 1
MAC: cc

IP : 5
GW : 1
MAC: dd

ip mc

2 aa

ip mc

3 bb

ip mc

4 cc

ip mc

5 dd

● IP 10.0.0.2 (2) wants to connect to IP 10.0.0.5 (5)
● Host 2 checks if host 5 is within its subnet, it is.
● Host 2 needs the MAC address of host 5
● Host 2 checks its ARP tables and its not there

aa GET / 5 ??2

IP : 2
GW : 1
MAC: aa

EXIP : 122.1.2.4
IP : 10.0.0.1 (1)
MAC: ff

IP : 3
GW : 1
MAC: bb

IP : 4
GW : 1
MAC: cc

IP : 5
GW : 1
MAC: dd

ip mc

2 aa

5 dd

ip mc

3 bb

ip mc

4 cc

ip mc

5 dd

● Host 2 sends an ARP request broadcast to all machines in its network
● Who has IP address 10.0.0.5?
● Host 5 replies with dd
● Host 2 updates its ARP Table

aa GET / 5 dd2

IP : 2
GW : 1
MAC: aa

EXIP : 122.1.2.4
IP : 10.0.0.1 (1)
MAC: ff

IP : 3
GW : 1
MAC: bb

IP : 4
GW : 1
MAC: cc

IP : 5
GW : 1
MAC: dd

ip mc

2 aa

5 dd

ip mc

3 bb

ip mc

4 cc

ip mc

5 dd

● IP 10.0.0.2 (2) wants to connect to IP 1.2.3.4 (x)
● Host 2 checks if 1.2.3.4 is within its subnet, it is NOT!
● Host 2 needs to talk to its gatway
● Host 2 needs the MAC address of the gateway

aa GET / x ??2
1.2.3.4 (x)

IP : 2
GW : 1
MAC: aa

EXIP : 122.1.2.4
IP : 10.0.0.1 (1)
MAC: ff

IP : 3
GW : 1
MAC: bb

IP : 4
GW : 1
MAC: cc

IP : 5
GW : 1
MAC: dd

ip mc

2 aa

5 dd

1 ff

ip mc

3 bb

ip mc

4 cc

ip mc

5 dd

● Host 2 checks its local ARP table, 10.0.0.1 is not it in
● Host 2 sends an ARP request to everybody in the network
● Who has 10.0.0.1? (A DANGEROUS QUESTION)
● Gateway reply with ff
● NAT than kicks in.

aa GET / x ff2

1.2.3.4

Summary

● ARP stands for Address resolution protocol
● We need MAC address to send frames between machines
● Almost always we have the IP address but not the MAC
● Need a lookup protocol that give us the MAC from IP address
● Attacks can be performed on ARP (ARP poisoning)

husseinnasser

Routing Example
How IP Packets are routed in Switches and Routers

husseinnasser

A

D

B

C

Switch (S)

Router (R)

Internet

10.0.0.2

10.0.0.3

10.0.0.5

10.0.0.4

10.0.0.100

8.8.8.8 (G)

1.2.3.4
192.168.1.2

X
192.168.1.1

A -> B
D -> X
B -> G

UDP
User Datagram Protocol

husseinnasser

UDP

● Stands for User Datagram Protocol
● Layer 4 protocol
● Ability to address processes in a host using ports
● Simple protocol to send and receive data
● Prior communication not required (double edge sword)
● Stateless no knowledge is stored on the host
● 8 byte header Datagram

husseinnasser

UDP Use cases

● Video streaming
● VPN
● DNS
● WebRTC

husseinnasser

BA

Multiplexing and demultiplexing

● IP target hosts only
● Hosts run many apps each with different requirements
● Ports now identify the “app” or “process”
● Sender multiplexes all its apps into UDP
● Receiver demultiplex UDP datagrams to each app

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 53
AppY-port 68
AppZ-port 6978

Source and Destination Port

● App1 on 10.0.0.1 sends data to AppX on 10.0.0.2
● Destination Port = 53
● AppX responds back to App1
● We need Source Port so we know how to send back data
● Source Port = 5555

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 53
AppY-port 68
AppZ-port 6978

10.0.0.1 53 10.0.0.25555

10.0.0.2 5555 10.0.0.153

Summary

● UDP is a simple layer 4 protocol
● Uses ports to address processes
● Stateless

husseinnasser

UDP Datagram
The anatomy of the UDP datagram

husseinnasser

UDP Datagram

● UDP Header is 8 bytes only (IPv4)
● Datagram slides into an IP packet as “data”
● Port are 16 bit (0 to 65535)

husseinnasser

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit
0

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Source port Destination port

4 32 Length Checksum

UDP Datagram header

https://www.ietf.org/rfc/rfc768.txt
https://en.wikipedia.org/wiki/User_Datagram_Protocol

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://www.ietf.org/rfc/rfc768.txt
https://en.wikipedia.org/wiki/User_Datagram_Protocol

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit
0

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Source port Destination port

4 32 Length Checksum

Source Port and Destination Port

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit
0

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Source port Destination port

4 32 Length Checksum

Length & Checksum

Data

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

UDP Pros and Cons
The power and drawbacks of UDP

husseinnasser

UDP Pros

● Simple protocol
● Header size is small so datagrams are small
● Uses less bandwidth
● Stateless
● Consumes less memory (no state stored in the server/client)
● Low latency - no handshake , order, retransmission or guaranteed delivery

husseinnasser

UDP Cons

● No acknowledgement
● No guarantee delivery
● Connection-less - anyone can send data without prior knowledge
● No flow control
● No congestion control
● No ordered packets
● Security - can be easily spoofed

husseinnasser

TCP
Transmission Control Protocol

husseinnasser

TCP

● Stands for Transmission Control Protocol
● Layer 4 protocol
● Ability to address processes in a host using ports
● “Controls” the transmission unlike UDP which is a firehose
● Connection
● Requires handshake
● 20 bytes headers Segment (can go to 60)
● Stateful

husseinnasser

TCP Use cases

● Reliable communication
● Remote shell
● Database connections
● Web communications
● Any bidirectional communication

husseinnasser

BA

TCP Connection

● Connection is a Layer 5 (session)
● Connection is an agreement between client and server
● Must create a connection to send data
● Connection is identified by 4 properties

○ SourceIP-SourcePort
○ DestinationIP-DestinationPort

husseinnasser

TCP Connection

● Can’t send data outside of a connection
● Sometimes called socket or file descriptor
● Requires a 3-way TCP handshake
● Segments are sequenced and ordered
● Segments are acknowledged
● Lost segments are retransmitted

husseinnasser

Multiplexing and demultiplexing

● IP target hosts only
● Hosts run many apps each with different requirements
● Ports now identify the “app” or “process”
● Sender multiplexes all its apps into TCP connections
● Receiver demultiplex TCP segments to each app based on connection pairs

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 53
AppY-port 68
AppZ-port 6978

Connection Establishment

● App1 on 10.0.0.1 want to send data to AppX on 10.0.0.2
● App1 sends SYN to AppX to synchronous sequence numbers
● AppX sends SYN/ACK to synchronous its sequence number
● App1 ACKs AppX SYN.
● Three way handshake

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 22
AppY-port 443
AppZ-port 80

10.0.0.1 5555 10.0.0.222SYN

10.0.0.2 22 10.0.0.15555SYN/ACK

10.0.0.1 5555 10.0.0.222ACK
10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1:5555:
10.0.0.2:22

File descriptor

Sending data

● App1 sends data to AppX
● App1 encapsulate the data in a segment and send it
● AppX acknowledges the segment
● Hint: Can App1 send new segment before ack of old segment arrives?

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 22
AppY-port 443
AppZ-port 80

10.0.0.1 5555 10.0.0.222ls

10.0.0.2 22 10.0.0.15555ACK

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1:5555:
10.0.0.2:22

File descriptor

Acknowledgment
● App1 sends segment 1,2 and 3 to AppX
● AppX acknowledge all of them with a single ACK 3

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 22
AppY-port 443
AppZ-port 80

10.0.0.1 5555 10.0.0.222seq1

10.0.0.2 22 10.0.0.15555ACK3

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1 5555 10.0.0.222seq2

10.0.0.1 5555 10.0.0.222seq3

Lost data
● App1 sends segment 1,2 and 3 to AppX
● Seg 3 is lost, AppX acknowledge 3
● App1 resend Seq 3

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 22
AppY-port 443
AppZ-port 80

10.0.0.1 5555 10.0.0.222seq1

10.0.0.2 22 10.0.0.15555ACK2

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1 5555 10.0.0.222seq2

10.0.0.1 5555 10.0.0.222seq3

10.0.0.1 5555 10.0.0.222seq3

10.0.0.2 22 10.0.0.15555ACK3

Closing Connection

● App1 wants to close the connection
● App1 sends FIN, AppX ACK
● AppX sends FIN, App1 ACK
● Four way handshake

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712
App3-port 2222

AppX-port 22
AppY-port 443
AppZ-port 80

10.0.0.1 5555 10.0.0.222FIN

10.0.0.2 22 10.0.0.15555ACK

10.0.0.1 5555 10.0.0.222ACK

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.1:5555:
10.0.0.2:22

File descriptor

10.0.0.2 22 10.0.0.15555FIN

Summary

● Stands for Transmission Control Protocol
● Layer 4 protocol
● “Controls” the transmission unlike UDP which is a firehose
● Introduces Connection concept
● Retransmission, acknowledgement, guaranteed delivery
● Stateful, connection has a state

husseinnasser

TCP Segment
The anatomy of the TCP Segment

husseinnasser

TCP Segment

● TCP segment Header is 20 bytes and can go up to 60 bytes
● TCP segments slides into an IP packet as “data”
● Port are 16 bit (0 to 65535)
● Sequences, Acknowledgment, flow control and more

husseinnasser

TCP Segment

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset Reserved
0 0 0

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N

Window Size

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bits if necessary.)

⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://datatracker.ietf.org/doc/html/rfc793

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://datatracker.ietf.org/doc/html/rfc793

Ports

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset Reserved
0 0 0

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N

Window Size

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bits if necessary.)

⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

Sequences and ACKs

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset Reserved
0 0 0

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N

Window Size

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bits if necessary.)

⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

Flow Control Window Size

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset Reserved
0 0 0

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N

Window Size

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bits if necessary.)

⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

9 bit flags

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset Reserved
0 0 0

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bits if necessary.)

⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

Maximum Segment Size

● Segment Size depends the MTU of the network
● Usually 512 bytes can go up to 1460
● Default MTU in the Internet is 1500 (results in MSS 1460)
● Jumbo frames MTU goes to 9000 or more
● MSS can be larger in jumbo frames cases

husseinnasser

Flow Control
How much the receiver can handle?

husseinnasser

Flow Control

● A want to send 10 segments to B
● A sends segment 1 to B
● B acknowledges segment 1
● A sends segment 2 to B
● B acknowledges segment 2
● VERY SLOW!

husseinnasser

BA

SEG 1

ACK 1

SEG 2

ACK 2

SEG 3

ACK 3

Flow Control

● A can send multiple segments and B can acknowledge all in 1 ACK
● The question is … how much A can send?
● This is called flow control

husseinnasser

BA

SEG 1

ACK 3

SEG 2 SEG 3

Flow Control

● When TCP segments arrive they are put in receiver’s buffer
● If we kept sending data the receiver will be overwhelmed
● Segments will be dropped
● Solution? Let the sender know how much you can handle

husseinnasser

BA

Flow Control Window Size (Receiver Window)

husseinnasser

Offsets Octet 0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset Reserved
0 0 0

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N

Window Size

16 128 Checksum Urgent pointer (if URG set)

20 160 Options (if data offset > 5. Padded at the end with "0" bits if necessary.)

⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

Window Size (Receiver Window) RWND

● 16 bit - Up to 64KB
● Updated with each acknowledgment
● Tells the sender how much to send before waiting for ACK
● Receiver can decide to decrease the Window Size (out of memory) more important stuff

husseinnasser

BA
Window size 3 segments (bytes)ACK1

1

2 3 4

ACK4

5 6 7

ACK7

RWND

Sliding Window
● Can’t keep waiting for receiver to acknowledge all segments
● Whatever gets acknowledge moves
● We “slide” the window
● Sender maintains the sliding window for the receiver

husseinnasser

BA

1 2 3

ACK2

4 5

ACK3

1

6

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3

3

354

54

654

Can be
dropped

Window Scaling

● 64 KB is too small
● We can’t increase the bits on the segment
● Meet Window Scaling factor (0-14)
● Window Size can go up to 1GB ((2^16-1) x 2^14)
● Only exchanged during the handshake

husseinnasser

B

1 2 3

Summary

● Receiver host has a limit
● We need to let the sender know how much it can send
● Receiver Window is in the segment
● Sender maintains the Sliding Window to know how much it can send
● Window Scaling can increase that

husseinnasser

Congestion Control
How much the network can handle?

husseinnasser

Congestion Control

● The receiver might handle the load but the middle boxes might not
● The routers in the middle have limit
● We don’t want to congest the network with data
● We need to avoid congestion
● A new window: Congestion Window (CWND)

husseinnasser

BA

Two Congestion algorithms

husseinnasser

● TCP Slow Start
○ Start slow goes fast!
○ CWND + 1 MSS after each ACK

● Congestion Avoidance
○ Once Slow start reaches its threshold this kicks in
○ CWND + 1 MSS after complete RTT

● CWND must not exceeds RWND

BA

How large can this get?
RWND

7

Slow Start

husseinnasser

● CWND starts with 1 MSS (or more)
● Send 1 Segment and waits for ACK
● With EACH ACK received CWND is incremented by 1 MSS
● Until we reach slow start threshold (ssthresh) we switch to congestion avoidance algorithm

BA

1

ACK1

2 3

ACK2

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

32

654

CWND + 1

ACK3CWND + 2

7

7

7

7

74 5 6
7

7

7

Congestion Avoidance

husseinnasser

● Send CWND worth of Segments and waits for ACK
● Only when ALL segments are ACKed add UP to one MSS to CWND
● Precisely CWND = CWND + MSS*MSS/CWND

BA

1

ACK1

2 3

ACK2

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

32

654

CWND + 1

ACK3CWND + 1

7

7

7

4 5 6

Congestion Detection

husseinnasser

● The moment we get timeouts, dup ACKs or packet drops
● The slow start threshold reduced to the half of whatever unacknowledged data is sent (roughly CWND/2 if all CWND worth of

data is unacknowledged)
● The CWND is reset to 1 and we start over.
● Min slow start threshold is 2*MSS

BA

1 2 3 4 5 6

1 2 3 4 5 6

1

CWND 7

7 1 2 3 4

1

Congestion Notification

husseinnasser

● We don’t want routers dropping packets
● Can Routers let us know when congestion hit?
● Meet ECN (Explicit Congestion Notification)
● Routers and middle boxes can tag IP packets with ECN
● The receiver will copy this bit back to the sender
● ECN is IP Header bit
● So Routers don’t drop packets just let me know you are reaching your limit

Summary

husseinnasser

● While the receiver may handle large data middle boxes might not
● Middle routers buffers may fill up
● Need to control the congestion in the network
● Sender can send segments up to CWND or RWND without ACK
● Isn’t normally a problem in hosts connected directly (LAN)

Congestion Detection
Slow Start vs Congestion Avoidance

husseinnasser

Two Congestion algorithms

husseinnasser

● TCP Slow Start
○ Start slow goes fast!
○ CWND + 1 MSS after each ACK

● Congestion Avoidance
○ Once Slow start reaches its threshold this kicks in
○ CWND + 1 MSS after complete RTT

● CWND must not exceeds RWND

BA

How large can this get?
RWND

Congestion Detection

husseinnasser

● The moment we get timeouts, dup ACKs or packet drops
● The slow start threshold reduced to the half of whatever unacknowledged data is sent (roughly CWND/2 if all

CWND worth of data is unacknowledged)
● The CWND is reset to 1 and we start over.
● Min slow start threshold is 2*MSS

BA

1 2 3 4 5 6

1 2 3 4 5 6

1

CWND 7

7 1 2 3 4

1

Slow start vs Congestion Avoidance

husseinnasser

Slow Start
Congestion Avoidance

CWND
bytes

Time

Slow start ends

Congestion triggered

Slow Start threshold

2*SMSS
(can’t go
lower)

RFC 5681 Page 7

1SMSS

Network Address
Translation

How the WAN sees your internal devices

husseinnasser

NAT

husseinnasser

● IPv4 is limited only 4 billion
● Private vs Public IP Address
● E.g. 192.168.x.x , 10.0.0.x is private not routable in the Internet
● Internal hosts can be assigned private addresses
● Only your router need public IP address
● Router need to translate requests

Local Network

192.168.1.2
AAA

192.168.1.4
CCC

192.168.1.1
DDD

8080

Request

192.168.1.2
AAA

192.168.1.4
CCC

192.168.1.1
DDD

8080
GET/ 192.168.1.4192.168.1.28992 8080

Response

192.168.1.2
AAA

192.168.1.4
CCC

192.168.1.1
DDD

8080
JSON 192.168.1.2192.168.1.48080 8992

NAT 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080

Request 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080
GET/ 55.11.22.33192.168.1.28992 8080

Router NAT 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080

GET/ 55.11.22.3344.11.5.177777 8080

192.168.1.2:8892 44.11.5.17:7777 55.11.22.33:8080

192.168.1.28992

NAT Table

Request 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080GET/ 55.11.22.3344.11.5.177777 8080

Response 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080JSON 44.11.5.1755.11.22.338080 7777

Router NAT 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080

JSON 192.168.1.255.11.22.338080 8992

44.11.5.17 7777

192.168.1.2:8892 44.11.5.17:7777 55.11.22.33:8080

NAT Table

Response 192.168.1.1
DDD

(Private)

44.11.5.17
DDD

(Public)

192.168.1.2
AAA

55.11.22.33
FFF

8080JSON 192.168.1.255.11.22.338080 8992

NAT Applications

husseinnasser

● Private to Public translations
○ So we don't run out IPv4

● Port forwarding
○ Add a NAT entry in the router to forward packets to 80 to a machine in your LAN
○ No need to have root access to listen on port 80 on your device
○ Expose your local web server publically

● Layer 4 Load Balancing
○ HAProxy NAT Mode - Your load balancer is your gateway
○ Clients send a request to a bogus service IP
○ Router intercepts that packet and replaces the service IP with a destination server
○ Layer 4 reverse proxying

https://www.haproxy.com/blog/layer-4-load-balancing-nat-mode/

Summary

husseinnasser

● IPv4 is limited only 4 billion
● Need to translate private to public
● Port forward/load balancing

TCP Connection States
Stateful protocol must have states

husseinnasser

TCP Connection States

● TCP is a stateful protocol
● Both client and server need to maintain all sorts of state
● Window sizes, sequences and the state of the connection
● The connection goes through many states

husseinnasser

husseinnasser

ESTABLISHED ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSED

….
4 minutes (2MSL)

CLOSE_WAIT

LAST_ACK

CLOSED

FIN

ACK

ACK

FIN

TCP Pros and Cons
The power and drawbacks of TCP

husseinnasser

TCP Pros

● Guarantee delivery
● No one can send data without prior knowledge
● Flow Control and Congestion Control
● Ordered Packets no corruption or app level work
● Secure and can’t be easily spoofed

husseinnasser

TCP Cons

● Large header overhead compared to UDP
● More bandwidth
● Stateful - consumes memory on server and client
● Considered high latency for certain workloads (Slow start/ congestion/ acks)
● Does too much at a low level (hence QUIC)

○ Single connection to send multiple streams of data (HTTP requests)
○ Stream 1 has nothing to do with Stream 2
○ Both Stream 1 and Stream 2 packets must arrive

● TCP Meltdown
○ Not a good candidate for VPN

husseinnasser

Overview of Popular Networking Protocols

DNS
Domain Name System

husseinnasser

Why DNS

● People can’t remember IPs
● A domain is a text points to an IP or a collection of IPs
● Additional layer of abstraction is good
● IP can change while the domain remain
● We can serve the closest IP to a client requesting the same domain
● Load balancing

husseinnasser

www.husseinnasser.com

DNS

● A new addressing system means we need a mapping. Meet DNS
● If you have an IP and you need the MAC, we use ARP
● If you have the name and you need the IP, we use DNS
● Built on top of UDP
● Port 53
● Many records (MX, TXT, A, CNAME)

husseinnasser

Google.com
(142.251.40.46)

How DNS works

● DNS resolver - frontend and cache
● ROOT Server - Hosts IPs of TLDs
● Top level domain server - Hosts IPs of the ANS
● Authoritative Name server - Hosts the IP of the target server

husseinnasser

Resolver ROOT

TLD

ANS

server

How DNS works

husseinnasser

Resolver

ROOT

TLD1

ANS1

Google.com
(142.251.40.46)

What is the IP of
google.com (1)

Where is the .COM

servers (2)Here is a TLD server

TLD1 (3)

Where is the Authoritative name
server of google.com (4)

Here it is ANS1 (5)

What is the IP of google.com (6)

Its 142.251.40.46 (7)

Its 142.251.40.46 (8)

TC
P

ha
nd

sh
ak

e (
9)

DNS Packet

Source: https://www.usenix.org/system/files/sec20-zheng.pdf
RFC: https://datatracker.ietf.org/doc/html/rfc1035

https://www.usenix.org/system/files/sec20-zheng.pdf
https://datatracker.ietf.org/doc/html/rfc1035

Notes about DNS

● Why so many layers?
● DNS is not encrypted by default.
● Many attacks against DNS (DNS hijacking/DNS poisoning)
● DoT / DoH attempts to address this

husseinnasser

Example

● Let us use nslookup to look up some DNS

husseinnasser

TLS
Transport Layer Security

husseinnasser

TLS

● Vanilla HTTP

● HTTPS

● TLS 1.2 Handshake

● Diffie Hellman

● TLS 1.3 Improvements

HTTP

GET /

Headers+

index.html

<html>...

open

close ….

80

HTTPS
open

close

Handshake

….

Headers+

index.html

<html>...

443

GET /

Why TLS

● We encrypt with symmetric key algorithms

● We need to exchange the symmetric key

● Key exchange uses asymmetric key (PKI)

● Authenticate the server

● Extensions (SNI, preshared, 0RTT)

TLS1.2 open

close ….

Client hello

Server hello (cert)

Change cipher, fin

GET /

Headers+

index.html

<html>...

Change cipher, fin

RSA Public key

RSA Private key

Diffie Hellman

+

+
=

Private x

Public g,n

Private y

Symmetric key

Diffie Hellman

+Public/
Unbreakable
/can be shared
g^x % n

+Public/
Unbreakable
/can be shared
g^y % n

(g^x % n)^y = g^xy % n
(g^y % n)^x = g^xy % n

TLS1.3 open

close

….

GET /

Headers+

index.html

<html>...

server hello/ change cipher/ fin

client hello / key /fin

(g^x % n)^y = g^xy % n
(g^y % n)^x = g^xy % n

TLS Summary

● Vanilla HTTP

● HTTPS

● TLS 1.2 Handshake (two round trips)

● Diffie Hellman

● TLS 1.3 Improvements (one round trip can be zero)

HTTP
Hypertext Transfer Protocol

husseinnasser

SSH
Secure Shell

husseinnasser

Networking Concepts for Effective Backend
Applications

MSS/MTU and Path MTU
How large the packet can get

husseinnasser

Overview

● TCP layer 4 unit is segment
● The segment slides into an IP Packet in layer 3
● The IP Packet now has the segment + headers
● The IP Packet slides into a layer 2 frame
● The frame has a fixed size based on the networking configuration.
● The size of the frame determines the size of the segment

husseinnasser

Hardware MTU

● Maximum Transmission Unit (MTU) is the size of the frame
● It is a network interface property default 1500
● Some networks have jumbo frames up to 9000 bytes
● Are there are networks with larger MTUs?

husseinnasser

IP Packets and MTU

● The IP MTU usually equals the Hardware MTU
● One IP packet “should” fit a single frame
● Unless IP fragmentation is in place
● Larger IP Packets will be fragmented into multiple frames

husseinnasser

MSS

● Maximum Segment size is determined based on MTU
● Segment must fit in an IP packet which “should” fit in a frame
● MSS = MTU - IP Headers - TCP Headers
● MSS = 1500 - 20 - 20 = 1460
● If you are sending 1460 bytes exactly that will fit nicely into a single MSS
● Which fits in a single frame

husseinnasser

husseinnasser

https://learningnetwork.cisco.com/s/question/0D53i00000Kt7CXCAZ/mtu-vs-pdu

Credit Cisco

https://learningnetwork.cisco.com/s/question/0D53i00000Kt7CXCAZ/mtu-vs-pdu

Path MTU Discovery (PMTUD)

● MTU is network interface property each host can have different value
● You really need to use the smallest MTU in the network
● Path MTU help determine the MTU in the network path
● Client sends a IP packet with its MTU with a DF flag
● The host that their MTU is smaller will have to fragment but can’t
● The host sends back an ICMP message fragmentation needed which will

lower the MTU

husseinnasser

MTU : 9000

MTU : 1500

MTU : 512

MTU : 1500

Summary

● MTU is the maximum transmission unit on the device
● MSS is the maximum segment size at layer 4
● If you can fit more data into a single segment you lower latency
● It lowers overhead from headers and processing
● Path MTU can discover the network lowest MTU with ICMP
● Flow control/congestion control still allows sending multiple segments without

ack

husseinnasser

Nagle's algorithm
Delay in the client side

husseinnasser

Nigel Algorithm

● In the telnet days sending a single byte in a segment is a waste
● Combine small segments and send them in a single one
● The client can wait for a full MSS before sending the segment
● No wasted 40 bytes header (IP + TCP) for few bytes of data

husseinnasser

Nagle's algorithm

● Assume MSS = 1460, A sends 500 bytes
● 500 < 1460 client waits to fill the segment
● A sends 960 bytes, segment fills and send
● If there isn’t anything to ACK data will be immediately sent

husseinnasser

BA

2500

2 1460

Delay

1460

Problem with Nagle's algorithm

● Sending large data causes delay
● A want to send 5000 bytes on 1460 MSS
● 3 full segments of 1460 with 620 bytes
● 4th segment is not sent!
● 4th not full segment are only sent when an ACK is received

husseinnasser

B

A

2620
Delay

146014601460

ACK

2620

Disabling Nagle's algorithm

● Most clients today disable Nagle's algorithm
● I rather get performance than small bandwidth
● TCP_NODELAY
● Curl disabled this back in 2016 by default because TLS handshake was slowed down
● https://github.com/curl/curl/commit/4732ca5724072f132876f520c8f02c7c5b654d9

husseinnasser

https://github.com/curl/curl/commit/4732ca5724072f132876f520c8f02c7c5b654d9

Delayed Acknowledgement
Less packets are good but performance is better

husseinnasser

Delayed Acknowledgment algorithm

● Waste to acknowledge segments right away
● We can wait little more to receive more segment and ack once

husseinnasser

BA Delay

12

34

5

ACK 5
ACK all
at once

Problem with delayed ACK

● Causes delays in some clients that may lead to timeout and retransmission
● Noticeable performance degradation
● Combined with Nagle's algorithm can lead to 400ms delays!
● Each party is waiting on each other

husseinnasser

B

A

2620
Delay

146014601460

ACK

2620

Delay

400 ms in some cases

Disabling Delayed acknowledgement algorithm

● Disable delayed ack algorithm can be done with TCP_QUICKACK option
● Segments will be acknowledged “quicker”

husseinnasser

The Cost of Connections
Understanding the cost of connections

husseinnasser

Connection establishment is costly

● TCP three way handshake
● The further apart the peers, the slower it is to send segments
● Slow start keeps the connection from reaching its potential right away
● Congestion control and flow control limit that further
● Delayed and Nigel algorithm can further slow down
● Destroying the connection is also expensive

husseinnasser

Connection Pooling

● Most implementation database backends and reverse proxies use pooling
● Establish a bunch of TCP connection to the backend and keep them running!
● Any request that comes to the backend use an already opened connection
● This way your connections will be “warm” and slow start would have already

kicked in
● Don’t close the connection unless you absolutely don’t need it

husseinnasser

Eager vs Lazy Loading

● Depending on what paradigm you take you can save on resources
● Eager loading -> Load everything and keep it ready

○ Start up is slow but requests will be served immediately
○ Some apps send warm up data to kick in the slow start but be careful of bandwidth and

scalability

● Lazy Loading -> only load things on demand
○ Start up is fast but requests will suffer initially

husseinnasser

TCP Fast Open
Wait I can send data during the handshake?

husseinnasser

Handshake is Slow

● We know it, the handshake is slow
● I already know the server I have established a connection prior
● Can we use a predetermined token to send data immediately during the

handshake?
● Meet TCP Fast open

husseinnasser

TCP Fast Open (TFO)

● Client and Server establishes connection 1, server sends an encrypted cookie
● Client stores the TFO cookie.
● Client want to create another connection
● Client sends SYN, data and TFO cookie in TCP options
● Server authenticate the cookie and sends response + SYN/ACK

husseinnasser

SYN+TFO+Data

SYN/ACK+Response

ACK

TCP Fast Open (TFO)

● TFO is enabled by default in linux 3.13 >
● You can enable TFO in curl --tcp-fastopen
● Goes without saying, you still get TCP Slow start with TCP Fast open
● You can take advantage of this feature to send early data

husseinnasser

Listening Server
Understanding what to listen on

husseinnasser

Listening

● You create a server by listening on a port on a specific ip address
● Your machine might have multiple interfaces with multiple IP address
● listen(127.0.0.1, 8080) -> listens on the local host ipv4 interface on port 8080
● listen(::1, 8080) -> listens on localhost ipv6 interface on port 8080
● listen(192.168.1.2, 8080) -> listens on 192.168.1.2 on port 8080
● listen(0.0.0.0, 8080) -> listens on all interfaces on port 8080 (can be

dangerous)

husseinnasser

Listening

● You can only have one process in a host listening on IP/Port
● No two processes can listen on the same port
● P1->Listen(127.0.0.1,8080)
● P2->Listen(127.0.0.1,8080) error

husseinnasser

There is always an exception

● There is a configuration that allows more than one process to listen on the
same port

● SO_PORTREUSE
● Operating systems balance segments among processes
● OS creates a hash source ip/source port/dest ip/ dest port
● Guarantees always go to the same process if the pair match

husseinnasser

10.0.0.1 10.0.0.2

App1-port 5555
App2-port 7712

AppX-port 8080
AppY-port 8080

10.0.0.1 8080 10.0.0.25555

10.0.0.1 8080 10.0.0.27712

Goes to AppX

Goes to AppY

TCP HOL
Head of line blocking

husseinnasser

TCP head of line blocking

● TCP orders packets in the order they are sent
● The segments are not acknowledged or delivered to the app until they are in

order
● This is great! But what if multiple clients are using the same connection

husseinnasser

1 2 3 4

2 3 4

1 2 3 4
2 3 41

TCP head of line blocking

● HTTP requests may use the same connection to send multiple requests
● Request 1 is segments 1,2
● Request 2 is segments 3,4
● Segments 2,3,4 arrive but 1 is lost?
● Request 2 technically was delivered but TCP is blocking it
● Huge latency in apps, big problem in HTTP/2 with streams
● QUIC solves this

husseinnasser

1 2 3 4

2 3 4

Request 2Request 1

Blocked! As one segment is
missing

Layer 4 vs Layer 7
Load balancers

A fundamental component of backend networking

Agenda

● Layer 4 vs Layer 7

● Load Balancer

● Layer 4 Load Balancer (pros and cons)

● Layer 7 Load Balancer (pros and cons)

Layer 7 Application

Layer 6 Presentation

Layer 5 Session

Layer 4 Transport

Layer 3 Network

Layer 2 Data Link

Layer 1 Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Load Balancer (aka fault tolerant)

Load Balancer

Backend server 1

Backend server 2

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

TCP Connection

SYN

SYN/ACK

ACK

TCP Connection SYNSYN/ACKACK

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

TCP Connection

SYN
SYN/ACK

ACK

When a client connects to the L4 load balancer, the
LB chooses one server and all segments for that

connections go to that server

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

Data 44.1.1.244.1.1.1

Data
44.1.1.3

44.1.1.2

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

RES 44.1.1.144.1.1.2

RES
44.1.1.2

44.1.1.3

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

HTTP GET /1

1 2 3

1

2

3

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

HTTP GET /2

5 6 7

5

6

7

Layer 4 Load Balancer

L4 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1
1 2 3

1

2

3

(New connection)
HTTP GET /3

Layer 4 Load Balancer (Pros and Cons)

Pros

● Simpler load balancing

● Efficient (no data lookup)

● More secure

● Works with any protocol

● One TCP connection (NAT)

Cons

● No smart load balancing

● NA microservices

● Sticky per connection

● No caching

● Protocol unaware (can be

dangerous) bypass rules

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

TCP Connection

SYN

SYN/ACK

ACK

TCP Connection SYNSYN/ACKACK

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

TCP Connection

SYN
SYN/ACK

ACK

When a client connects to the L7 load balancer, it
becomes protocol specific. Any logical “request” will
be forwarded to a new backend server. This could

be one or more segments

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

Data 44.1.1.244.1.1.1

Data
44.1.1.3

44.1.1.2

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

RES 44.1.1.144.1.1.2

RES
44.1.1.2

44.1.1.3

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

HTTP GET /1

1 2 3

1

2

3

1 2 3

LB parsers and
understand the

segments

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1

HTTP GET /2

5 6 7

5

6

7

Layer 7 Load Balancer

L7 Load Balancer
44.1.1.2

Backend server 1
44.1.1.3

Backend server 2
44.1.1.4

44.1.1.1
1 2 3

1

2

3

(New connection)
HTTP GET /3

Layer 7 Load Balancer (Pros and Cons)

Pros

● Smart load balancing

● Caching

● Great for microservices

● API Gateway logic

● Authentication

Cons

● Expensive (looks at data)

● Decrypts (terminates TLS)

● Two TCP Connections

● Must share TLS certificate

● Needs to buffer

● Needs to understand protocol

Summary

● Layer 4 vs Layer 7

● Load Balancer

● Layer 4 Load Balancer (pros and cons)

● Layer 7 Load Balancer (pros and cons)

