
Numerical Methods for Engineers

Lecture Notes for

Jeffrey R. Chasnov

https://www.coursera.org/learn/numerical-methods-engineers
https://www.coursera.org/learn/numerical-methods-engineers

The Hong Kong University of Science and Technology
Department of Mathematics
Clear Water Bay, Kowloon

Hong Kong

Copyright © 2020-2022 by Jeffrey Robert Chasnov

This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view

a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to

Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Preface
View the promotional video on YouTube

These are the lecture notes for my upcoming Coursera course , Numerical Methods for
Engineers (for release in January 2021). Before students take this course, they should have
some basic knowledge of single-variable calculus, vector calculus, differential equations
and matrix algebra. Students should also be familiar with at least one programming
language. In this course, however, I will exclusively use Matlab. I teach the basics of
Matlab in the first week, but this may be too short an introduction for students of lim-
ited programming ability and they may need to supplement their programming lessons
elsewhere.

I have divided these notes into chapters called Lectures, with each Lecture correspond-
ing to a video on Coursera. I have also uploaded all my Coursera videos to YouTube, and
links are placed at the top of each Lecture.

There are problems at the end of each lecture, some that require analytical solutions
and others that require Matlab programs. Solutions to the analytical questions and
Learner Templates for the Matlab programs can be found in the Appendix.

On the Coursera platform, at the end of each week there is also both an assessed
multiple-choice quiz and a Matlab project. Details of the Matlab projects and their
Learner Templates can also be found in these lecture notes.

Jeffrey R. Chasnov

Hong Kong
Nov 2020

https://youtu.be/qFJGMBDfFMY
https://www.coursera.org/learn/numerical-methods-engineers/
https://www.coursera.org/learn/numerical-methods-engineers/

Contents

I Scientific Computing 1

1 Binary numbers 2

2 Double precision 4

3 Matlab as a calculator 6

4 Scripts and functions 8

5 Vectors 10

6 Line plots 13

7 Matrices 16

8 Logicals 20

9 Conditionals 22

10 Loops 24

11 Project I: Logistic map (Part A) 26

12 Project I: Logistic map (Part B) 28

II Root Finding 30

13 Bisection method 31

14 Newton’s method 33

15 Secant method 35

16 Order of convergence 37

17 Convergence of Newton’s method 39

18 Fractals from Newton’s method 41

19 Coding the Newton fractal 43

20 Root finding in Matlab 46

21 Project II: Feigenbaum delta (Part A) 48

iv

CONTENTS v

22 Project II: Feigenbaum delta (Part B) 50

23 Project II: Feigenbaum delta (Part C) 51

III Matrix Algebra 53

24 Gaussian elimination without pivoting 54

25 Gaussian elimination with partial pivoting 56

26 LU decomposition with partial pivoting 58

27 Operation counts 61

28 Operation counts for Gaussian elimination 63

29 Operation counts for forward and backward substitution 65

30 Eigenvalue power method 67

31 Eigenvalue power method (example) 69

32 Matrix algebra in Matlab 71

33 Systems of nonlinear equations 74

34 Systems of nonlinear equations (example) 76

35 Project III: Fractals from the Lorenz equations 78

IV Quadrature and Interpolation 80

36 Midpoint rule 81

37 Trapezoidal rule 83

38 Simpson’s rule 85

39 Composite quadrature rules 87

40 Gaussian quadrature 89

41 Adaptive quadrature 91

42 Quadrature in Matlab 93

43 Interpolation 95

44 Cubic spline interpolation (Part A) 97

CONTENTS vi

45 Cubic spline interpolation (Part B) 99

46 Interpolation in Matlab 102

47 Project IV: Bessel functions and their zeros 104

V Ordinary Differential Equations 106

48 Euler method 107

49 Modified Euler method 109

50 Runge-Kutta methods 111

51 Second-order Runge-Kutta methods 112

52 Higher-order Runge-Kutta methods 114

53 Higher-order odes and systems 116

54 Adaptive Runge-Kutta methods 118

55 Integrating odes in Matlab (Part A) 120

56 Integrating odes in Matlab (Part B) 121

57 Shooting method for boundary value problems 124

58 Project V: Two-body problem (Part A) 126

59 Project V: Two-body problem (Part B) 128

VI Partial Differential Equations 130

60 Boundary and initial value problems 131

Practice quiz: Classify partial differential equations 132

61 Central difference approximation 133

62 Discrete Laplace equation 135

63 Natural ordering 137

64 Matrix formulation 139

65 Matlab solution of the Laplace equation (direct method) 141

66 Jacobi, Gauss-Seidel and SOR methods 144

CONTENTS vii

67 Red-black ordering 146

68 Matlab solution of the Laplace equation (iterative method) 147

69 Explicit methods for solving the diffusion equation 149

70 Von Neumann stability analysis 151

71 Implicit methods for solving the diffusion equation 153

72 Crank-Nicolson method for the diffusion equation 155

73 Matlab solution of the diffusion equation 157

74 Project VI: Two-dimensional diffusion equation 160

Problem solutions and Matlab learner templates 163

Week I

Scientific Computing

In this week’s lectures, we learn how to program using Matlab. We learn how real numbers are
represented in double precision and how to do basic arithmetic with Matlab. We learn how to use
scripts and functions, how to represent vectors and matrices, how to draw line plots, how to use
logical variables, conditional statements, for loops and while loops.

Your programming project will be to write a Matlab code to compute the bifurcation diagram for
the logistic map.

1

Lecture 1 | Binary numbers
View this lecture on YouTube

We do our arithmetic using decimals, which is a base-ten positional number system. For
example, the meaning of the usual decimal notation is illustrated by

524.503 = 5× 102 + 2× 101 + 4× 100 + 5× 10−1 + 0× 10−2 + 3× 10−3.

Each position in a decimal number corresponds to a power of 10. A digit in this number
system is defined as any of the numerals from 0 to 9, while digit is also the English word
meaning a finger or a toe. Decimals probably arose from counting using ten fingers.

Computers count using two states, and this has led to the use of binary numbers,
which is a base-two positional number system. Here, instead of digits, we use bits, defined
as either a 0 or a 1. The meaning of a binary number is illustrated by

101.011 = 1× 22 + 0× 21 + 1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3.

In both decimal and binary, certain fractions can be represented only by infinitely
repeated numerals. In decimal, only fully reduced fractions whose denominators are a
product of powers of 2 and 5 do not repeat. For example, we have

1
2
= 0.5,

1
4
= 0.25,

1
5
= 0.2,

1
8
= 0.125;

but we also have

1
3
= 0.3,

1
6
= 0.16,

1
7
= 0.142857,

1
9
= 0.1,

where we use the bar notation to indicate repeating numerals.
In binary, only fully reduced fractions whose denominators are a product of powers

of 2 do not repeat. For example, using our more familiar digits to represent the fraction,
the corresponding binary numbers are given by

1
2
= 0.1,

1
4
= 0.01,

1
8
= 0.001,

and
1
3
= 0.01,

1
5
= 0.0011,

1
6
= 0.0010,

1
7
= 0.001,

1
9
= 0.000111.

Binary numbers with infinite repeats can not be represented exactly using a finite number
of bits and are a potential source of round-off errors.

2

https://youtu.be/2zd-TgHJgVU

WEEK I. SCIENTIFIC COMPUTING 3

Problems for Lecture 1

1. Using binary, round the fractions 1/3, 1/5, 1/6, 1/7 and 1/9 to six places after the
binary point. Which numbers round down and which numbers round up?

Solutions to the Problems

Lecture 2 | Double precision
View this lecture on YouTube

Eight bits make a byte. Most numerical computation is done in double precision, with
numbers stored using eight bytes. The format of a double precision number is

s︷︸︸︷
�
0

e︷ ︸︸ ︷
�
1
�
2
�
3
�
4
�
5
�
6
�
7
�
8
�
9
�
10
�
11

f︷ ︸︸ ︷
�
12
· · · · · · · ·�

63
= (−1)s × 2e−1023 × 1.f

where s is the sign bit, e is the biased exponent, and 1.f is the significand. Here, e is a
whole number written in binary, 1023 is in decimal, and f is the fractional part of the
binary number following a binary point.

The 64 bits of a double precision number are distributed so that the sign uses one bit,
the exponent uses 11 bits (in decimal, 0 ≤ e ≤ 2047), and the significand uses 52 bits. The
distribution of bits reconciles two conflicting needs: that the numbers should range from
the very large to the very small, and that numbers should be closely spaced.

Both the largest and smallest exponents are reserved. When e is all ones (e = 2047
in decimal), f = 0 is used to represent infinity (written in Matlab as Inf) and f 6= 0 is
used to represent ‘not a number’ (written in Matlab as NaN). NaN typically results from
a 0/0, ∞/∞ or ∞ −∞ operation. When e is all zeros, the double precision representa-
tion changes from 1. f to 0. f , allowing these denormal numbers to gracefully underflow
towards zero. The largest positive double precision number is realmax = 1.7977e+308,
and the smallest positive normal number is realmin = 2.2251e-308.

Another important number is called machine epsilon (written in Matlab as eps) and
is defined as the distance between one and the next largest machine number. If 0 ≤ δ <

eps/2, then 1 + δ = 1 in computer arithmetic. And since

x + y = x(1 + y/x),

when y/x < eps/2, then x + y = x. In double precision, machine epsilon is equal to
eps = 2.2204e-16. Note that the spacing between numbers is uniform between powers
of 2, but changes by a factor of two with each additional power of two. For example, the
spacing of numbers between one and two is eps, between two and four is 2*eps, between
four and eight is 4*eps, and so on.

We have already learned that not all rational numbers can be represented exactly in
double precision. For example, the numbers 1/3 and 1/5 are inexact. In most compu-
tations this doesn’t matter. But one needs to be aware that a calculation using inexact
numbers that should result in an integer (such as zero) may not because of roundoff
errors.

4

https://youtu.be/3RTbnzHtf7Q

WEEK I. SCIENTIFIC COMPUTING 5

Problems for Lecture 2

1. Determine the double precision formats of the numbers 1, 1/2 and 1/3.

2. Using the format of a double precision number, determine the largest machine number
realmax.

3. Using the format of a double precision number, determine the smallest positive normal
machine number realmin.

4. Using the format of a double precision number, determine the distance between one
and the next largest machine number.

Solutions to the Problems

Lecture 3 | Matlab as a calculator
View this lecture on YouTube

The basic arithmetic operators are the usual +, -, *, /, ^. The single quote ' transposes a
matrix. The order of operations follow the standard mathematical rules, and parenthesis
can be used. Common mathematical functions are sin, cos, tan, exp, log. The base-10
logarithm is log10. The square-root is sqrt and the absolute value is abs. There is a con-
stant pi, though one will need to define e=exp(1). Complex numbers use the imaginary
unit i or j. Some examples are

>> log(exp(1))

ans =

1

>> (sqrt(5)+1)/2

ans =

1.6180

>>

Matlab also has two special numbers called Inf (for infinity) and NaN (for not-a-number).
These special numbers commonly occur when your program either has a bug or some
other run-time error. Simple occurrences of Inf and NaN are

>> 1/0

ans =

Inf

>> 0/0

ans =

NaN

>>

A semicolon at the end of a command suppresses output. Two commands can also be
placed on one line, using either a comma or a semicolon.:

>> x=0; y=1;

>> x,y

x =

0

y =

1

>>

6

https://youtu.be/Z2b5sAq-inQ

WEEK I. SCIENTIFIC COMPUTING 7

Problems for Lecture 3

1. Use Matlab to compute the following expressions.

a)

√
5− 1
2

b)

(√
5+1
2

)10
−
(√

5−1
2

)10

√
5

c)
25

25 − 1

d)
(

1− 1
25

)−1

e) e3

f) ln (e3)

g) sin (π/6)

h) cos (π/6)

i) sin2 (π/6) + cos2 (π/6)

Solutions to the Problems

Lecture 4 | Scripts and functions
View this lecture on YouTube

For a quick solution to a problem, one can type directly into the Command Window.
But when you want to type a longer sequence of commands, or write a program that will
be run several times, you are better off writing either a script or a function. These saved
programs are called m-files because of their .m extension.

A script is essentially a sequence of commands that can be typed directly into the
Command Window, but are saved into a file. When working with a file, editing and
debugging become easier, and commands can be quickly added or changed.

You can easily start a new script in the HOME tab, and save it with a name and in
a directory of your choice. When developing code, many Matlab programmers like to
start a script with the commands

clear all; close all; clc;

These three commands clear the work space, close all figures, and clear the command
window. It is a quick way to reset Matlab to prevent previously work from interfering
with your new script.

It is often useful for a script to print data during execution. To print to the command
window or a file, you will need to learn how to use the Matlab function fprintf.m.

A function is different than a script because the variables defined in a function are
removed from the Workspace after the function ends. You can also create a new function
in the HOME tab. When creating a new function, my Editor helpfully shows me the
following:

function [outputArg1,outputArg2] = untitled(inputArg1,inputArg2)

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

outputArg1 = inputArg1;

outputArg2 = inputArg2;

end

A function can optionally have both input arguments and output arguments. The title of
the function should match the name of the file it is saved under. Functions may also be
written inside of scripts. Matlab calls these local functions.

In this course, we will mainly write scripts. But we will also make use of many Matlab

provided functions. After this course, you may sometimes want to download functions
from the Matlab File Exchange. Maybe you will even write a function yourself for others
to use.

8

https://youtu.be/LY0IsQvEqhE

WEEK I. SCIENTIFIC COMPUTING 9

Problems for Lecture 4

1. The first few Fibonacci numbers Fn are given by 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , where start-
ing from 2, each number is the sum of the preceding two numbers. Write a function
F = Fibonacci(n)

that returns the nth Fibonacci number. You should use Binet’s formula, given by

Fn =
Φn − (−φ)n
√

5
,

where

Φ =

√
5 + 1
2

, φ =

√
5− 1
2

.

Because of round-off errors, your function should return a number rounded to the nearest
integer using the built-in Matlab function round.m.

Solutions to the Problems

Lecture 5 | Vectors
View this lecture on YouTube

Matlab can work directly with both vectors and matrices. We discuss vectors first. A
vector in Matlab can either be a row vector or a column vector. An example of a row
vector is x=[1 2 3], or equivalently, x=[1,2,3]. On the command line,

>> x=[1,2,3]

x =

1 2 3

>>

An example of a column vector is x=[1;2;3]. On the command line,

>> x=[1;2;3]

x =

1

2

3

>>

Spaces or commas stay in the same row; semicolons move to the next row. Extra spaces
are ignored. Row vectors can be changed to column vectors, or vice-a-versa, by the trans-
pose operator ', e.g.,

>> x=[1;2;3]'

x =

1 2 3

>>

There are some useful functions for constructing vectors. The zero row vector of size n is
constructed from x=zeros(1,n) (and the column vector from x=zeros(n,1) or by using
the transpose operator). The row vector of size n consisting of all ones is constructed from
x=ones(1,n). For example,

>> x=zeros(1,3)

x =

0 0 0

>> x=ones(1,3)

x =

1 1 1

>>

Another useful function constructs a vector of evenly spaced points. To construct a row
vector of six evenly space points between zero and one, we can write x=linspace(0,1,6).
If the number of points is not specified, the default is 100. The colon operator also works,

10

https://youtu.be/1sFzTZ0mpi0

WEEK I. SCIENTIFIC COMPUTING 11

where the spacing is specified rather than the number of points: x=0:0.2:1. On the com-
mand line,

>> x=linspace(0,1,6)

x =

0 0.2000 0.4000 0.6000 0.8000 1.0000

>> x=0:0.2:1

x =

0 0.2000 0.4000 0.6000 0.8000 1.0000

>>

If x is a vector, then x*x results in an error. If you want to perform element-wise opera-
tions, then you need to add a period (or dot) before the operator. There is a dot-multiply
operator (.*), a dot-divide operator (./) and a dot-exponentiation operator (.^). On the
command line,

>> x=[1 2 3];

>> x.*x

ans =

1 4 9

>> x./x

ans =

1 1 1

>> x.^x

ans =

1 4 27

>>

All the standard built-in mathematical functions such as cos, sin, exp, log, etc. also work
element-wise on vectors (and matrices, in general). For example,

>> x=0:pi/2:2*pi;

>> cos(x)

ans =

1.0000 0.0000 -1.0000 -0.0000 1.0000

>>

WEEK I. SCIENTIFIC COMPUTING 12

Problems for Lecture 5

1. Compute the values of cos x and sin x for x = 0, π/6, π/4, π/3, and π/2. Write a
script and use fprintf.m to print a nice table to the command window.

Solutions to the Problems

Lecture 6 | Line plots
View this lecture on YouTube

The most commonly used graphics function in Matlab is the line plot. With x and y

vectors containing the x-values and y-values of a sequence of points, a line plot connect-
ing these points can be created using plot(x,y). For example, we can plot a circle with
the following script:

theta=linspace(0,2*pi);

x=cos(theta); y=sin(theta);

plot(x,y);

The figure that is plotted looks like this:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Actually, this plot doesn’t look exactly like a circle because the unit length of the x-axis is
larger than the unit length of the y-axis. We can obtain a plot that looks like a circle by
typing the additional command axis equal. We can also try to make the plot as pretty
as possible. I can show you one possibility:

13

https://youtu.be/dw4a1SmUw7Q

WEEK I. SCIENTIFIC COMPUTING 14

axis equal;

axis([-1.1 1.1 -1.1 1.1]);

ax = gca;

ax.XTick = [-1 -0.5 0 0.5 1];

ax.YTick = [-1 -0.5 0 0.5 1];

xlabel('x', 'Interpreter', 'latex', 'FontSize',14);

ylabel('y', 'Interpreter', 'latex', 'FontSize',14);

title('Plot of a Circle', 'Interpreter', 'latex', 'FontSize',16);

Here, we use axis([xmin xmax ymin ymax]) to set the limits on the axis. The command
ax = gca returns what Matlab calls the handle to the current axes for the current figure.
Its use here allows us to specify the location of the tick marks on the x- and y-axes. To label
the axes, I use the xlabel and ylabel commands, and rather than use the default font
(as in xlabel('x')), I prefer to write mathematical symbols using latex, and to employ a
larger font. The resulting graph now looks like

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Matlab can also annotate the graph with text, plot unconnected symbols such as points,
open circles, crosses, etc., and use various line types and colors. You will need to fre-
quently consult the plot function in the Help Documentation to construct a graph to your
liking. You will also need to use the hold on command if you want to add additional
points or curves to an already drawn plot.

WEEK I. SCIENTIFIC COMPUTING 15

Problems for Lecture 6

1. Generate the coordinates for a logarithmic spiral, with

x = ekθ cos θ, y = ekθ sin θ.

Choose k = 0.05 and plot θ values from −10π to 10π using 2000 evenly spaced points.

2. Generate the coordinates of a leminscate, with

x = ± cos θ
√

2 cos(2θ), y = sin θ
√

2 cos(2θ).

Plot θ values from −π/4 to π/4 using 1000 evenly spaced points.

Solutions to the Problems

Lecture 7 | Matrices
View this lecture on YouTube

The name Matlab stands for Matrix Laboratory, and was created to work with matri-
ces. One can build matrices element-by-element:

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>>

One can then access the matrix elements of A directly. For example, the element in
row m, column n is accessed as A(m,n). Submatrices of A can also be accessed. The
submatrix consisting of rows i, j and columns l, m can be accessed as A([i j], [l m]).
For example,

>> A(2,3)

ans =

6

>> A([1 2], [2 3])

ans =

2 3

5 6

>>

The colon operator can also be used to good effect. The first row of matrix A can be
accessed using A(1,:), and the first column by A(:,1):

>> A=[1 2 3;4 5 6;7 8 9];

>> A(1,:)

ans =

1 2 3

>> A(:,1)

ans =

1

4

7

>>

A matrix is actually stored in memory as a single array consisting of concatenated columns
of the matrix. To view a matrix as a column vector, we can use A(:).

Matlab’s end can also used to denote the last index of a row or column, as in

>> A(1,2:end)

ans =

16

https://youtu.be/hpQpsL0_WA8

WEEK I. SCIENTIFIC COMPUTING 17

2 3

>>

One can also directly reassign matrix elements. For example,

>> A(1,1)=10

A =

10 2 3

4 5 6

7 8 9

>>

Matlab functions can also be used to build matrices. The m-by-n zero matrix is con-
structed from zeros(m,n) and the m-by-n ones matrix from ones(m,n):

>> zeros(3,2)

ans =

0 0

0 0

0 0

>> ones(2,3)

ans =

1 1 1

1 1 1

>>

The n-by-n identity matrix is constructed from eye(n), and a diagonal matrix is con-
structed by specifying a vector for the diagonal elements, as in diag([a b c]). On the
command line,

>> eye(2)

ans =

1 0

0 1

>> diag([1 2])

ans =

1 0

0 2

>>

The Matlab function diag.m can also be used to construct banded matrices. For example,
the 3-by-3 tridiagonal matrix with 2’s on the diagonal and -1’s directly above and below
the diagonal can be constructed using

>> diag([2 2 2]) + diag([-1 -1],-1) + diag([-1 -1],1)

ans =

2 -1 0

-1 2 -1

0 -1 2

>>

WEEK I. SCIENTIFIC COMPUTING 18

A more general construction for an n-by-n matrix (here, n = 4) can be done using the
ones.m function:

>> n=4;

>> diag(2*ones(1,n)) + diag(-ones(1,n-1),-1) + diag(-ones(1,n-1),1)

ans =

2 -1 0 0

-1 2 -1 0

0 -1 2 -1

0 0 -1 2

>>

Matrix multiplication uses the * symbol. For example, we can multiply two two-by-two
matrices:

>> A=[1 2;3 4]; B=[-3 -4;4 5]

>> A*B

ans =

5 6

7 8

>>

We cannot matrix multiply two row vectors, because an m-by-n matrix can only be right
multiplied by an n-by-p matrix (inner matrix dimensions must agree):

>> x=[1 2 3];

>> x*x

Error using *
Inner matrix dimensions must agree.
>>

We can, however, multiply after taking the transpose of one of the vectors. For example,
the scalar product is

>> x=[1 2 3];

>> x*x'

ans =

14

>>

WEEK I. SCIENTIFIC COMPUTING 19

Problems for Lecture 7

1. Construct the following matrix in Matlab. Use the colon operator and the ones.m

function:

A =

6 9 12 15 18 21
4 4 4 4 4 4
2 1 0 −1 −2 −3
−6 −4 −2 0 2 4

Evaluate the following expressions without using Matlab. Check your answers with
Matlab.

a) A([1,3],[2,4])

b) A(:,[1,4:6])

c) A([2,3],:)

2. Construct matrices of size n-by-n that have the following characteristics:

a) Matrix A is a diagonal matrix with 1, 2, 3, . . . , n along the diagonal.

b) Matrix B has ones along the superdiagonal (one above the diagonal), ones along the
subdiagonal (one below the diagonal) and zeros everywhere else.

c) Matrix C has threes on the diagonal, fours on the superdiagonal, ones on two above
the diagonal and zeros everywhere else.

To construct these three matrices, write the Matlab function specified by
function [A, B, C] = banded_matrices(n)

Solutions to the Problems

Lecture 8 | Logicals
View this lecture on YouTube

A logical variable takes the value of 1 for true and 0 for false. Below is a table of log-
ical operators used to create logical variables:

Operator Description
> greater than
< less than

>= greater than or equal to
<= less than or equal to
== equal to
∼= not equal to
& element-wise AND operator

&& scalar AND operator
| element-wise OR operator

|| scalar OR operator
∼ NOT operator

For example, p=(0<1) will create a logical variable p and assign it the value of 1 because
0<1 is a true statement. Note that “equal to” is a double equal sign to distinguish it from
the assignment operator.

Logical variables (with value 0 or 1) can be used in arithmetic expressions. Logical
operators can also be used with vectors and matrices. The dimensions on both sides of
a logical operator must agree, and the logical operator returns a vector or matrix of the
same size after doing an element-by-element comparison. Here is a simple example:

>> x=[0 1 2 0]; y=[0 2 4 0];

>> x==y

ans =

1 0 0 1

>>

Logical operators have lower precedence than arithmetic operators, so for example p=(0<1)
can be written as p=0<1, and (10/2)==5 can be written 10/2==5. For clarity, you can al-
ways use parentheses. Logicals find their main use in conditional statements, which we
discuss next.

20

https://youtu.be/zUq5TNff5mo

WEEK I. SCIENTIFIC COMPUTING 21

Problems for Lecture 8

1. Evaluate the following expressions. Check your answer with Matlab.

a) 14>15/3

b) 8/2<5*3+1>9

c) 8/(2<5)*3+(1>9)

d) 2+4+3~=60/4-1

2. Given u=[4 -2 1] and v=[0 2 1], evaluate the following logical expressions. Check
your answer with Matlab.

a) u<=v

b) u==v

c) u<u+v

d) (u<v)+u

Solutions to the Problems

Lecture 9 | Conditionals
View this lecture on YouTube

Matlab supports the if . . . end structure with its variants if . . . else . . . end and
if . . . elseif . . . else . . . end. An expression immediately follows the if or elseif

keyword. Then follows one or more statements. The statements are executed only when
the expression is true. An expression is true when it is nonempty and contains only
nonzero elements. An expression can be a logical, integer or real variable or array. Most
commonly, the expression contains logical operators and evaluates either as true (1) or
false (0).

As an example, let’s write a simple Matlab function to evaluate sin x/x with the
correct limiting value when x = 0. Here it is:

function y = my_sinc(x)

if x~=0
y=sin(x)/x;

else

y=1;

end

Instead of writing if x~=0, some Matlab programmers might simply write if x because
the following statement is executed only when x~=0. On the command line,

>> sin(0)/0

ans =

NaN

>> my_sinc(0)

ans =

1

22

https://youtu.be/jEIQqdcrkWQ

WEEK I. SCIENTIFIC COMPUTING 23

Problems for Lecture 9

1. Write two functions that return the two solutions to the quadratic equation ax2 + bx +

c = 0. Use something like

function [p, q] = quadratic_formula(a, b, c)

For the first function, assign

p =
−b +

√
b2 − 4ac

2a
, q =

−b−
√

b2 − 4ac
2a

.

Make sure the code works for some trial values of a, b, and c. Then try your code for
a = 1, b = −1012, c = 1. Note that q = 0, which is obviously not a correct root. This is an
example of round-off error.

For the second function, assign

p =
−b +

√
b2 − 4ac

2a
, q =

2c
−b +

√
b2 − 4ac

(b < 0),

and

p =
2c

−b−
√

b2 − 4ac
, q =

−b−
√

b2 − 4ac
2a

, (b ≥ 0).

Again, make sure the code works for some trial values of a, b, and c. Now try this code
for a = 1, b = −1012, c = 1 to obtain more reasonable results.

Solutions to the Problems

Lecture 10 | Loops
View this lecture on YouTube

Most mathematical algorithms require iteration. The workhorse for iterations is the for

... end loop. The usage is

for variable = expression

statements

end

It is common to make use of the colon operator in the expression. For example, suppose
that you want to iterate the logistic map xn+1 = rxn(1− xn) a fixed number of times. Part
of your script may contain the code snippet

ntimes=10000;

for n=1:ntimes

x=r*x*(1-x);

end

Matlab also provides a while loop. The usage is

while expression

statements;

end

The while loop continues as long as the expression is true. A while loop can be useful,
for instance, when you want to iterate a sequence of commands until some event happens.
For example, you may want to iterate a loop until some variable converges to a value. You
can then end the loop when the change in the variable’s value from the previous iteration
falls below some specified threshold. For example,

tol=1.e-08;

error=2*tol;

while error>tol

xold=x;

x=r*x*(1-x);

error=abs(x-xold)

end

Matlab also has the commands continue and break. The continue command skips
all remaining statements in the current loop iteration and proceeds to the top of the loop
and the next iteration. The break command exits the loop entirely.

Loops are also commonly nested. Make sure that a different name for the control
variable is used for each nested loop.

24

https://youtu.be/gx922llI3ro

WEEK I. SCIENTIFIC COMPUTING 25

Problems for Lecture 10

1. Write a function that returns the nth Fibonacci number Fn for integer input n. Use the
recursion relation

Fn = Fn−1 + Fn−2; F1 = 1, F2 = 1.

Handle zero and negative integers using

F0 = 0, F−n = (−1)n+1Fn.

Solutions to the Problems

Lecture 11 | Project I: Logistic map
(Part A)

View this lecture on YouTube

Your project for this week is to compute the bifurcation diagram for the logistic map.
First, a little theory. The logistic map is a one-dimensional map, whose general form is
given by

xn+1 = f (xn). (11.1)

A solution of a map proceeds by iteration: starting with an initial value x0, one generates
the sequence x1, x2, x3, and so on.

We say that x∗ is a fixed point of the map if x∗ = f (x∗). The stability of a fixed point
can be determined by perturbation. We write xn = x∗ + εn, and xn+1 = x∗ + εn+1, and
substitute into (11.1). Using a first-order Taylor series expansion, we obtain

x∗ + εn+1 = f (x∗ + εn) = f (x∗) + εn f ′(x∗) + . . .

= x∗ + εn f ′(x∗) + . . . ,

which for a small enough perturbation yields

|εn+1/εn| =
∣∣ f ′(x∗)

∣∣ .

The fixed point x∗ is called stable if |εn+1| < |εn| so that the perturbation decays. There-
fore,

x∗ is

{
a stable fixed point if | f ′(x∗)| < 1;
an unstable fixed point if | f ′(x∗)| > 1.

The logistic map that you will study is given by

xn+1 = µxn(1− xn),

where you will assume that 0 < µ < 4 and 0 < x0 < 1.
A fixed point x∗ of the logistic map satisfies the quadratic equation x = µx(1− x),

which has two solutions given by x∗ = 0 and x∗ = 1− 1/µ. The stability of the fixed
points are determined from the derivative f ′(x) = µ(1− 2x) evaluated at the fixed points,
and we find that x∗ = 0 is stable for 0 < µ < 1 and x∗ = 1− 1/µ is stable for 1 < µ < 3.
For µ > 3, there are no longer any stable fixed points and you will reveal the behavior of
the map numerically.

26

https://youtu.be/mhHrjvmPnFY

WEEK I. SCIENTIFIC COMPUTING 27

Problems for Lecture 11

1. We say that x1 and x2 are in the orbit of a period-2 cycle of a one-dimensional map f (x)
if x2 = f (x1) and x1 = f (x2), and x1 6= x2. Determine the orbit of a period-2 cycle for the
logistic map by solving the equation x = f (f (x)), with f (x) = µx(1− x). You will obtain
a fourth-degree polynomial equation. Solve it by factoring out the known roots x = 0 and
x = 1− 1/µ.

Solutions to the Problems

Lecture 12 | Project I: Logistic map
(Part B)

View this lecture on YouTube

The computational engine of your Matlab code is the iteration of the logistic map given
by

xn+1 = µxn(1− xn).

Your goal is to draw a diagram which illustrates the behavior of the iterates of the logistic
map as a function of the parameter µ. You should discard the earliest iterations corre-
sponding to transient behavior. The parameter µ should vary over the parameter range
2.4 ≤ µ ≤ 4.

Your main computation can contain one outer and two inner loops. Here is a reason-
able outline:

Loop 1 Start at µ = 2.4 and finish at µ = 4.
Set x = x0.
Loop 2 Iterate logistic map a fixed number of times (transient).

Compute x
Loop 2 (end)
Loop 3 Iterate logistic map a fixed number of times (data).

Compute and save x
Loop 3 (end)

Loop 1 (end)

One will need to set some parameters and these can usually be adjusted after viewing
a preliminary plot. Parameters include: (1) the resolution in µ; (2) the starting value x0;
(3) the number of transient iterations; (4) the number data points for each µ. For grading
purposes, I will preset these parameters in the assessed code, but feel free to experiment
with their values in MATLAB.

There are two possible approaches to graphing the bifurcation diagram. The simplest
approach is to plot the iterates of the logistic map as points on a graph. This can serve to
illustrate the bifurcation diagram but can not ultimately result in a high resolution image.
The plotting of more and more data, rather than resulting in a better image, results in a
blackened figure with all fine details obscured.

The best approach is to bin the iteration data in x, and to plot the bifurcation diagram
by shading individual pixels of the image directly. To bin the data, you will need an
additional parameter (5) the resolution in x. This portion of code is outside the scope of
this exercise and will be provided to the students.

28

https://youtu.be/wuWdpgYi78A

WEEK I. SCIENTIFIC COMPUTING 29

Problems for Lecture 12

1. Compute the bifurcation diagram for the logistic map. The logistic map is given by

xn+1 = µxn(1− xn).

and the bifurcation diagram illustrates the behavior of the iterates of the map as a function
of the parameter µ. You are tasked with writing the computational engine for this code.
Here is a reasonable outline:

Loop 1 Start at µ = 2.4 and finish at µ = 4.
Set x = x0.
Loop 2 Iterate logistic map a fixed number of times (transient).

Compute x
Loop 2 (end)
Loop 3 Iterate logistic map a fixed number of times (data).

Compute and save x
Loop 3 (end)

Loop 1 (end)

Solutions to the Problems

Week II

Root Finding

In this week’s lectures, we learn about root finding. We begin by learning basic numerical methods:
the bisection method, Newton’s method and the secant method. We then learn how fast these
methods converge to the root, defining the concept of order of convergence. The order of convergence
of Newton’s method is determined, and students are asked in the problems to find the order of
convergence of the secant method. An interesting computation of fractals from Newton’s method
is demonstrated using Matlab, and we also discuss the Matlab functions that can perform root
finding.

Your programming project will be to write a Matlab code using Newton’s method to compute the
Feigenbaum delta from the bifurcation diagram for the logistic map.

30

Lecture 13 | Bisection method
View this lecture on YouTube

The problem of root finding is to solve f (x) = 0 for a root x = r. The bisection method
is conceptually the simplest method and almost always works. It is, however, the slowest
method and because of this should usually be avoided.

The bisection method requires finding values x0 and x1 such that x0 < r < x1. We say
that x0 and x1 bracket the root. With f (r) = 0, we want f (x0) and f (x1) to be of opposite
sign, so that f (x0) f (x1) < 0. We then assign x2 to be the midpoint of x0 and x1, that is
x2 = (x1 + x0)/2, which we can write in the form

x2 = x1 −
x1 − x0

2
.

Here, −(x1 − x0)/2 corrects the previous best value of the root, assumed to be x1, and
can be used as an estimate of the error. For the next iteration step, the sign of f (x2) needs
to be determined, and we proceed to compute x3 using either x0 and x2, or x1 and x2,
whichever pair brackets the root. The iteration proceeds in this fashion and is typically
stopped when the absolute value of the error estimate is smaller than some required pre-
cision.

Example: Estimate
√

2 = 1.41421 . . . using x0 = 1 and x1 = 2.

Now
√

2 is the zero of the function f (x) = x2− 2, and f (x0 = 1) = −1 and f (x1 = 2) = 2,
so that the two initial guesses bracket the root. We iterate the algorithm. We have

x2 = (1 + 2)/2 = 3/2 = 1.5.

Now, f (x2) = 9/4− 2 = 1/4 > 0 so that x0 and x2 bracket the root. Therefore,

x3 = (1 + (3/2))/2 =
5
4
= 1.25.

Now, f (x3) = 25/16− 2 = −7/16 < 0 so that x2 and x3 bracket the root. Therefore,

x4 = ((3/2) + (5/4))/2 =
11
8

= 1.375,

and so on.

31

https://youtu.be/mzQFGOvH-mk

WEEK II. ROOT FINDING 32

Problems for Lecture 13

1. Using the bisection method, estimate
√

3 = 1.73205 Use x0 = 1 and x1 = 2 and
iterate to the value of x4.

Solutions to the Problems

Lecture 14 | Newton’s method
View this lecture on YouTube

Newton’s method is the fastest method, but requires analytical computation of the deriva-
tive of f (x). If the derivative is known and computational speed is required, then this
method should be used, although convergence to the desired root is not guaranteed.
Newton’s method approximates the function
y = f (x) by the tangent line to the curve at the
point (xn, yn), where yn = f (xn). The slope of
the tangent line is f ′(xn), and we have

y− f (xn) = f ′(xn)(x− xn).

The next approximation to the root occurs where
the line intercepts the x-axis. At this point, y = 0
and x = xn+1. We have − f (xn) = f ′(xn)(xn+1−
xn), or

xn+1 = xn −
f (xn)

f ′(xn)
.

Newton’s Method requires a guess for x0, which should be chosen as close as possible to
the root x = r.

Example: Estimate
√

2 = 1.41421 . . . using x0 = 1.

Again, we solve f (x) = 0, where f (x) = x2 − 2. To implement Newton’s Method, we use
f ′(x) = 2x. Therefore, Newton’s Method is the iteration

xn+1 = xn −
x2

n − 2
2xn

=
x2

n + 2
2xn

.

Choosing an initial guess x0 = 1, we have

x1 =
(1)2 + 2

2× 1
=

3
2
= 1.5, x2 =

(3
2)

2 + 2

2× 3
2

=
17
12

= 1.416667,

x3 =
(17

12)
2 + 2

2× (17
12)

=
577
408

= 1.41426,

and so on. Notice how much faster Newton’s method converges compared to the bisection
method.

33

https://youtu.be/cf_NK7NlWrs

WEEK II. ROOT FINDING 34

Problems for Lecture 14

1. Using Newton’s method, estimate
√

3 = 1.73205 Use x0 = 1 and iterate to the
value of x3.

Solutions to the Problems

Lecture 15 | Secant method
View this lecture on YouTube

The secant method is second fastest to Newton’s method, and is most often used when it
is not possible to take an analytical derivative of the function f (x). To derive the secant
method, we begin with Newton’s method,

xn+1 = xn −
f (xn)

f ′(xn)
,

and substitute an approximate numerical derivative for f ′(xn):

f ′(xn) ≈
f (xn)− f (xn−1)

xn − xn−1
.

The Secant method requires an initial guess for both x0 and x1. The initial guesses need
not bracket the root, but convergence of the method is not guaranteed.

Estimate
√

2 = 1.41421 . . . using x0 = 1 and x1 = 2.

Again, we solve f (x) = 0, where f (x) = x2 − 2. The Secant Method iterates

xn+1 = xn −
(x2

n − 2)(xn − xn−1)

x2
n − x2

n−1

=
xnxn−1 + 2
xn + xn−1

.

With x0 = 1 and x1 = 2, we have

x2 =
2× 1 + 2

2 + 1
=

4
3
= 1.33333, x3 =

4
3 × 2 + 2

4
3 + 2

=
7
5
= 1.4,

x4 =
7
5 ×

4
3 + 2

7
5 + 4

3
=

58
41

= 1.41463,

and so on.

35

https://youtu.be/Zz8AYQ8c5-U

WEEK II. ROOT FINDING 36

Problems for Lecture 15

1. Using the secant method, estimate
√

3 = 1.73205 Use x0 = 1 and x1 = 2 and iterate
to x4.

Solutions to the Problems

Lecture 16 | Order of convergence
View this lecture on YouTube

Consider f (x) = 0, and suppose r is a root and xn is the nth approximation to this
root. Define the error in the nth approximation as

εn = r− xn.

If for large n, we have the approximate relationship

|εn+1| = k|εn|p,

with k a positive constant and p ≥ 1, we say the root-finding numerical method is of order
p. Larger values of p correspond to faster convergence to the root. The bisection method
is of order one: the error is reduced by approximately a factor of 2 with each iteration so
that

|εn+1| =
1
2
|εn|.

Newton’s method is the fastest converging root-finding method and is of order two. The
secant method is somewhat slower and is of order approximately 1.6. In the next lecture,
we show how to derive the order of Newton’s method using Taylor series expansions.

37

https://youtu.be/dHQVQG8NqR8

WEEK II. ROOT FINDING 38

Problems for Lecture 16

1. Complete the table below. Assume |εn+1| = 0.5|εn|p.

Error
Iteration # p = 1 p = 1.6 p = 2

0 1 1 1

1 0.5 0.5 0.5

2

3

4

5

Solutions to the Problems

Lecture 17 | Convergence of
Newton’s method

View this lecture on YouTube

We derive the rate of convergence of Newton’s method. Consider f (x) = 0 with root
r. Newton’s method is given by

xn+1 = xn −
f (xn)

f ′(xn)
.

Defining εn = r− xn, and subtract both sides of Newton’s iteration from r:

r− xn+1 = r− xn +
f (xn)

f ′(xn)
, which we write as εn+1 = εn +

f (r− εn)

f ′(r− εn)
.

We Taylor series expand the functions f (r− εn) and f ′(r− εn) for small εn, using f (r) = 0.
We have

f (r− εn) = −εn f ′(r) +
1
2

ε2
n f ′′(r) + . . . , f ′(r− εn) = f ′(r)− εn f ′′(r) +

The ellipsis (. . .) represents higher-order terms in ε that we will eventually neglect. We
will make use of the Taylor series 1/(1− ε) = 1+ ε+ ε2 + . . . , which converges for |ε| < 1.
We expand as follows:

εn+1 = εn +
f (r− εn)

f ′(r− εn)
= εn +

−εn f ′(r) + 1
2 ε2

n f ′′(r) + . . .
f ′(r)− εn f ′′(r) + . . .

= εn +
−εn +

1
2 ε2

n
f ′′(r)
f ′(r) + . . .

1− εn
f ′′(r)
f ′(r) + . . .

= εn +

(
−εn +

1
2

ε2
n

f ′′(r)
f ′(r)

+ . . .
)(

1 + εn
f ′′(r)
f ′(r)

+ . . .
)

= εn +

(
−εn + ε2

n

(
1
2

f ′′(r)
f ′(r)

− f ′′(r)
f ′(r)

)
+ . . .

)
= −1

2
f ′′(r)
f ′(r)

ε2
n +

We have shown that to leading order in ε, we have

|εn+1| = k|εn|2, with k =
1
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ ,

an expression that is valid as long as f ′(r) 6= 0 (a so-called simple root). Because the error
decreases with each iteration as the square of the previous error, we say that Newton’s
method is of order two.

39

https://youtu.be/IPP1p0NKdeo

WEEK II. ROOT FINDING 40

Problems for Lecture 17

1. Take the following steps to determine the rate of convergence of the secant method,
given by

xn+1 = xn −
(xn − xn−1) f (xn)

f (xn)− f (xn−1)
.

a) Let εn = r− xn, and subtract both sides of the secant method from r to obtain

εn+1 = εn +
(εn−1 − εn) f (r− εn)

f (r− εn)− f (r− εn−1)
.

b) Taylor series expand f (r− εn) and f (r− εn−1) for small ε using f (r) = 0. Obtain

εn+1 = εn +
−εn f ′(r) + 1

2 ε2
n f ′′(r) + . . .

f ′(r)− 1
2 (εn−1 + εn) f ′′(r) + . . .

.

c) For small ε, use the Taylor series expansion

1
1− ε

= 1 + ε + ε2 + . . .

to obtain

|εn+1| =
1
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ |εn||εn−1|.

d) Try |εn+1| = k|εn|p and |εn| = k|εn−1|p to obtain the equation p2 = p+ 1. Determine
p.

Solutions to the Problems

Lecture 18 | Fractals from
Newton’s method

View this lecture on YouTube

The three cube roots of unity are the solutions of z3 = 1. We can solve this equation
using Euler’s formula, exp (iθ) = cos θ + i sin θ. We write z3 = exp (i2πn), with n an
integer, and take the cube root to find the solutions z = exp (i2πn/3). The three unique
complex roots correspond to n = 0, 1 and 2, and using the trig values of special angles,
we find

r1 = 1, r2 = −1
2
+

√
3

2
i, r3 = −1

2
−
√

3
2

i.

These roots can be located on the unit circle in the complex plane, and are shown below.

We now define the root-finding problem to be f (z) = 0, where f (z) = z3 − 1, with
derivative f ′(z) = 3z2. Newton’s method for determining the three complex roots of
unity is given by the iteration

zn+1 = zn −
f (z)
f ′(z)

.

Here, we want to determine which initial values of z0 in the complex plane converge to
which of the three cube roots of unity. So if for a given z0, the iteration converges to r1,
say, we will color red the point z0 in the complex plane; if it converges to r2, we will color
z0 green; and if to r3, blue.

In the next lecture, we show you how to construct a Matlab program that grids up a
rectangle in the complex plane, and determines the convergence of each grid point z0. By
coloring these grid points, we will compute a beautiful fractal.

41

https://youtu.be/vuL87WfRIQE

WEEK II. ROOT FINDING 42

Problems for Lecture 18

1. What are the four fourth roots of unity?

Solutions to the Problems

Lecture 19 | Coding the Newton
fractal

View this lecture on YouTube

Our code first defines the function f (z) and its derivative to be used in Newton’s method,
and defines the three cube roots of unity:

f = @(z) z.^3-1; fp = @(z) 3*z.^2;

root1 = 1; root2 = -1/2 + 1i*sqrt(3)/2; root3 = -1/2 - 1i*sqrt(3)/2;

We let z = x + iy. The complex plane is represented as a two-dimensional grid and we de-
fine nx and ny to be the number of grid points in the x- and y-directions, respectively. We
further define xmin and xmax to be the minimum and maximum values of x, and similarly
for ymin and ymax. Appropriate values were determined by numerical experimentation.

nx=2000; ny=2000;

xmin=-2; xmax=2; ymin=-2; ymax=2;

The grid in x and y are defined using linspace.

x=linspace(xmin,xmax,nx); y=linspace(ymin,ymax,ny);

We then use meshgrid to construct the two-dimensional grid. Suppose that the x-y grid
is defined by x=[x1 x2 x3] and y=[y1 y2 y3]. Then [X, Y]=meshgrid(x,y) results in
the matrices

X =

x1 x2 x3

x1 x2 x3

x1 x2 x3

 , Y =

y1 y1 y1

y2 y2 y2

y3 y3 y3

 ,

and we can grid the complex plane using

[X,Y]=meshgrid(x,y);

Z=X+1i*Y;

We now iterate Newton’s method nit times. These lines constitute the computational
engine of the code.

nit=40;

for n=1:nit

Z = Z - f(Z) ./ fp(Z);

end

We next test to see which roots have converged. We use the logical variables Z1, Z2 and
Z3 to mark the grid points that converge to one of the three roots. Grid points that have
not converged are marked by Z4, and our convergence criteria is set by the variable eps.
The function abs returns the modulus of a complex number.

eps=0.001;

Z1 = abs(Z-root1) < eps; Z2 = abs(Z-root2) < eps;

Z3 = abs(Z-root3) < eps; Z4 = ~(Z1+Z2+Z3);

Finally, we draw the fractal. The appropriate graphing function to use here is image,
which can color pixels directly. We first open a figure and set our desired colormap.

43

https://youtu.be/_FrpXPbP-zk

WEEK II. ROOT FINDING 44

Here, our map will be a four-by-three matrix, where row one of the matrix corresponds
with the RGB triplet [1 0 0] that specifies red; row two of the matrix [0 1 0] specifies
green; row three of the matrix [0 0 1] specifies blue; and row four of the matrix [0 0 0]

specifies black. The numbers 1-2-3-4 in our image file will then be colored red-green-blue-
black.

figure;

map = [1 0 0; 0 1 0; 0 0 1; 0 0 0]; colormap(map);

We construct the image file by combining the values of our four Z matrices into a single Z

matrix containing elements 1, 2, 3, or 4.

Z=(Z1+2*Z2+3*Z3+4*Z4);

The graph is created in our final lines of code. We use the limits of x and y to specify
the location of our image in the complex plane. One needs to be aware that the function
image assumes that the first row of pixels is located at the top of the image. So by default,
image inverts the y-axis direction by setting the ’YDir’ property to ’reverse.’ We need to
undo this when plotting data from a computation because the usual convention is for the
first row of pixels to be at the bottom of the image. We therefore set the ‘YDir’ property
to ‘normal.’

image([xmin xmax], [ymin ymax], Z); set(gca,'YDir','normal');

xlabel('x', 'Interpreter', 'latex', 'FontSize',14);

ylabel('y', 'Interpreter', 'latex', 'FontSize',14);

title('Fractal from $f(z)=z^3-1$', 'Interpreter', 'latex','FontSize', 16)

The resulting plot looks like

WEEK II. ROOT FINDING 45

Problems for Lecture 19

1. Determine the fractal that arises from using Newton’s method to compute the four
fourth roots of unity.

Solutions to the Problems

Lecture 20 | Root finding in
Matlab

View this lecture on YouTube

Matlab has two commonly used functions for root finding. The first, roots.m, finds
the n complex roots of an nth degree polynomial. This function is called with syn-
tax r = roots(p), where p is a vector containing n + 1 polynomial coefficients, start-
ing with the coefficient of xn. For example, to find the roots of the cubic equation
x3 − 3x2 + 4x− 2 = 0, one types
>> p=[1 -3 4 -2];

>> r=roots(p)

r =

1.0000 + 1.0000i

1.0000 - 1.0000i

1.0000 + 0.0000i

>>

The function roots.m works in a roundabout way by finding the eigenvalues of a matrix
using the Matlab function eig.m. You can browse the help file for more details, or type
edit roots.m to look at the function code directly.

The second Matlab function, fzero.m, finds a real root of a nonlinear function. The
function fzero is typically called as r = fzero(f,x0), where fzero solves f(x) = 0, and
x0 is either an initial guess for the root, or a two-dimensional vector whose components
bracket the root. For fzero to work, the function must change sign at the root. For
example, to solve x = exp (−a ∗ x), where a is a parameter set equal to one-half, one can
write the script

f = @(x,a) x-exp(-a*x); a=1/2;

x0=1;

r = fzero(@(x) f(x,a), x0);

Here, we have defined f using an anonymous function. The argument includes x and also
parameters. The function fzero is passed the defined function as @(x) f(x,a).

Sometimes it may be easier to define f in a subfunction. Then a similar script would
look like

a=1/2; x0=1;

r = fzero(@(x) f(x,a), x0)

function y = f(x,a)

y=x-exp(-a*x);

end

46

https://youtu.be/Bel9Z5INuOg

WEEK II. ROOT FINDING 47

Problems for Lecture 20

1. Consider a planet in an elliptical orbit about the sun. Assume the sun is fixed in
space and at the origin of the coordinate system, and the planet is located at position
r(t) = x(t)i + y(t)j. Let T = 2π/ω be the period of the planet’s orbit, let a and b be one-
half the major and minor axes of the ellipse, and let e =

√
1− b2/a2 be the eccentricity of

the ellipse, with 0 ≤ e < 1. Then the coordinates of the planet at time t are given by

x(t) = a (e− cos E) , y(t) = b sin E.

The eccentric anomaly, E = E(t), is a solution of Kepler’s equation, a transcendental
equation given by

E = ωt + e sin E.

By solving Kepler’s equation (using fzero.m), you will compute and plot several different
elliptical orbits of a planet.

The closest approach to the sun occurs when t = 0 and E = 0. To construct your plots,
choose units so that the distance of closest approach is one. At the closest approach, y = 0
and x = a(e− 1), so choose the unit of length such that a(e− 1) = −1. Solving for a and
then b in terms of the dimensionless parameter e, we have

a =
1

1− e
, b =

√
1 + e
1− e

.

If we also choose units such that the period of an orbit is one, then ω = 2π. On a single
plot, show the four orbits corresponding to e = 0, 1/4, 1/2 and 3/4.

Solutions to the Problems

Lecture 21 | Project II: Feigenbaum
delta (Part A)

View this lecture on YouTube

The bifurcation diagram for the logistic map,

xi+1 = µxi(1− xi),

showed a fixed point of the map bifurcating to a period-2 cycle at µ = 3, and to a period-4
cycle near µ = 3.45. A period-8 cycle can be observed soon after, and in fact, period
doubling continues indefinitely, eventually accumulating at a value of µ after which the
period becomes infinite. This phenomena is called the period-doubling route to chaos,
and is observed in many nonlinear systems.

Let µn be the value of µ at which the period-2n cycle bifurcates to a period-2n+1 cycle.
The Feigenbaum delta is defined as

δ = lim
n→∞

µn−1 − µn−2

µn − µn−1
,

and is a measure of the decreasing width in µ of the period-2n regions as n increases.
The goal here is to accurately compute the Feigenbaum delta. Let N = 2n, and define

the orbit of a period-N cycle to be x0, x1, . . . , xN−1. It can be shown that every period-N
cycle contains one value of µ with x = 1/2 in the orbit. This orbit is superstable: iterations
of the logistic map most rapidly converge to the orbit solution. If we define mn to be the
value of µ at which x0 = 1/2, say, is in the orbit of the period-N cycle, then the easiest
way to compute the Feigenbaum delta is to replace µn by mn in its definition.

We can determine analytically the first two values of mn. For the period-1 cycle, we
solve x0 = µx0(1− x0); and taking x0 = 1/2 yields µ = m0 = 2. For the period-2 cycle,
we solve

x1 = µx0(1− x0), x0 = µx1(1− x1);

and taking x0 = 1/2 reduces to µ3− 4µ2 + 8 = 0. We can make use of Matlab’s roots.m:
>> roots([1,-4,0,8])'

ans =

3.2361 2.0000 -1.2361

>>

The root µ = 2 corresponds to the m0 solution. We could have divided this root out of the
cubic equation to obtain m1 = 1 +

√
5 ≈ 3.2361. Further values of mn will be computed

numerically.

48

https://youtu.be/Od3a6kx3t2k

WEEK II. ROOT FINDING 49

Problems for Lecture 21

1. Determine the value of m1 as follows:

a) Show that the period-two fixed-point equations, given by

x1 = µx0(1− x0), x0 = µx1(1− x1),

with x0 = 1/2 reduces to µ3 − 4µ2 + 8 = 0.

b) Using long division, determine the quadratic polynomial obtained from

µ3 − 4µ2 + 8
µ− 2

.

Show that the positive root of this quadratic is m1 = 1 +
√

5.

Solutions to the Problems

Lecture 22 | Project II: Feigenbaum
delta (Part B)

View this lecture on YouTube

We have defined the Feigenbaum delta as

δ = lim
n→∞

mn−1 −mn−2

mn −mn−1
,

where mn is the value of µ at which x0 = 1/2 is in the orbit of the period-N cycle, with
N = 2n. Analytically, we found m0 = 2 and m1 = 1 +

√
5 ≈ 3.2361.

To determine more values of mn, we solve a root-finding problem. For each value of
n, we determine the value of µ such that the orbit of the logistic map starts with x0 = 1/2
and ends with xN = 1/2. In other words, we solve for g(µ) = 0, where

g(µ) = xN − 1/2.

The roots are µ = m0, m1, . . . , mn, and the largest root mn will be the sort-after solution.
We use Newton’s method. The derivative of g(µ) with respect to µ is given by g′(µ) =

x′N . From the logistic map and its derivative, we obtain the coupled equations

xi+1 = µxi(1− xi), x′i+1 = xi(1− xi) + µx′i(1− 2xi),

with initial values x0 = 1/2 and x′0 = 0. Newton’s method then solves for mn by iterating

µ(j+1) = µ(j) − xN − 1/2
x′N

,

where both xN and x′N are obtained by iterating the coupled difference equations N times.
Newton’s method requires an initial guess µ(0) for the root mn. Using the definition of

the Feigenbaum delta, we can approximate mn by

mn ≈ mn−1 +
mn−1 −mn−2

δn−1
,

where δn−1 is our current best approximation to the Feigenbaum delta, given by

δn−1 =
mn−2 −mn−3

mn−1 −mn−2
.

To start, we will take δ1 = 5, and compute δn for n ≥ 2. The successive values of δn should
converge to the Feigenbaum delta. In the next lecture, we will outline the construction of
a Matlab code.

50

https://youtu.be/Qbc2AdcHWRo

Lecture 23 | Project II: Feigenbaum
delta (Part C)

View this lecture on YouTube

Your second Matlab project is to compute the Feigenbaum delta to high accuracy. The
first 30 decimal places of the Feigenbaum delta are known to be

δ = 4.669 201 609 102 990 671 853 203 821 578

Let’s see how close you can get! Your computational engine should contain three nested
loops. Here is a reasonable outline:

Loop 1 Start at period-2n with n = 2, and increment n with each iteration
Compute initial guess for mn using mn−1, mn−2 and δn−1

Loop 2 Iterate Newton’s method, either a fixed number of times or until convergence
Initialize logistic map
Loop 3 Iterate the logistic map 2n times

Compute x and x′

Loop 3 (end)
One step of Newton’s method

Loop 2 (end)
Save mn and compute δn

Loop 1 (end)

You will find that your code runs fast, and convergence during Newton’s method is quick.
Unfortunately, precise calculation of the Feigenbaum delta is limited by round-off error
occurring with double precision. Grading will be done on the computed values of δn.

For ambitious students:
One method to obtain a higher precision calculation of the Feigenbaum delta using Mat-
lab is to replace all double precision calculations with variable precision arithmetic. The
relevant Matlab functions that you will need are vpa and digits, and you can use the
Matlab help pages to develop your code.

51

https://youtu.be/c7msbbiXtLw

WEEK II. ROOT FINDING 52

Problems for Lecture 23

1. Compute the Feigenbaum delta from the logistic map. The logistic map is given by

xi+1 = µxi(1− xi),

and the Feigenbaum delta is defined as

δ = lim
n→∞

δn, where δn =
mn−1 −mn−2

mn −mn−1
,

and where mn is the value of µ for which x0 = 1/2 is in the orbit of the period-N cycle
with N = 2n. Here is a reasonable outline:

Loop 1 Start at period-2n with n = 2, and increment n with each iteration
Compute initial guess for mn using mn−1, mn−2 and δn−1

Loop 2 Iterate Newton’s method, either a fixed number of times or until convergence
Initialize logistic map
Loop 3 Iterate the logistic map 2n times

Compute x and x′

Loop 3 (end)
One step of Newton’s method

Loop 2 (end)
Save mn and compute δn

Loop 1 (end)

Grading will be done on the computed values of δn up to n = 11. Set δ1 = 5.

Solutions to the Problems

Week III

Matrix Algebra

In this week’s lectures, we learn about computational matrix algebra. When performing Gaussian
elimination, round-off errors can ruin the computation and must be handled using the method
of partial pivoting, where row interchanges are performed before each elimination step. The LU
decomposition algorithm then includes permutation matrices. We also present the concept of op-
eration counts, and teach the big-Oh notation for predicting the increase in computational time
with large problem sizes. We show how to count operations for Gaussian elimination and forward
and backward substitution. The power method for computing the largest eigenvalue and associated
eigenvector of a matrix is also explained. Finally, we show how to use Gaussian elimination to
solve a system of nonlinear differential equations using Newton’s method.

Your programming project will be to write a Matlab code that applies Newton’s method to a
system of nonlinear equations.

53

Lecture 24 | Gaussian elimination
without pivoting

View this lecture on YouTube

Gaussian elimination is the standard algorithm to solve a system of linear equations.
However, a straightforward numerical implementation of Gaussian elimination without
row or column interchanges (pivoting) can result in large errors because of the computer
representation of real numbers. We illustrate here a clear but extreme example of what
can go wrong. Be aware, though, that the accumulation of smaller round-off errors in
large systems of linear equations can also lead to inaccurate results.

Define ε = 2−52 ≈ 2.2× 10−16 to be machine epsilon, that is, the distance between one
and the next largest machine number. In computer arithmetic, recall that 2 + ε = 2, and
4− ε = 4.

Now, consider the system of equations given by

εx1 + 2x2 = 4, x1 − x2 = 1.

Since ε << 1, a close approximation to the solution can be found to be x2 = 2 and x1 = 3.
Gaussian elimination on the augmented matrix without row exchanges (called pivot-

ing) follows (
ε 2 4
1 −1 1

)
→
(

ε 2 4
0 − 2

ε − 1 − 4
ε + 1

)
.

Back substitution, assuming computer arithmetic, then results in

x2 =
− 4

ε + 1

− 2
ε − 1

=
4− ε

2 + ε
= 2, x1 =

4− 2x2

ε
=

4− 4
ε

= 0.

The result for x1 is wrong (zero instead of three). We can see where this error comes from
if we solve the problem exactly:

x1 =
4− 2x2

ε
=

4− 2(4−ε
2+ε)

ε
=

6ε

ε(2 + ε)
=

6
2 + ε

≈ 3.

In the exact calculation, x2 is slightly less than two, and a subtraction between two nearly
identical numbers leads to the correct answer. But the roundoff errors, here given by
4− ε = 4 and 2 + ε = 2, causes the calculation to go completely awry.

In the next lecture, we will learn how to fix this problem.

54

https://youtu.be/S5dL9xOj0lU

WEEK III. MATRIX ALGEBRA 55

Problems for Lecture 24

1. Consider again the system of equations given by

εx1 + 2x2 = 4, x1 − x2 = 1.

The solution of these equations using Gaussian elimination without pivoting was found
to be

x2 =
− 4

ε + 1

− 2
ε − 1

, x1 =
4− 2x2

ε
.

Compute the value of x2 and x1 using Matlab as a calculator. Now, repeat this calculation
for the system of equations given by

2εx1 + 2x2 = 4, x1 − x2 = 1.

Solutions to the Problems

Lecture 25 | Gaussian elimination
with partial pivoting

View this lecture on YouTube

Gaussian elimination with partial pivoting is the standard method for solving a linear
system of equations on the computer. We consider again the system of equations given by

εx1 + 2x2 = 4, x1 − x2 = 1,

with a close approximation to the solution given by x2 = 2 and x1 = 3.
The idea of partial pivoting is to perform row interchanges before each elimination

step so that the pivot has the largest absolute value among all the rows. The augmented
matrix of our system of equations is given by(

ε 2 4
1 −1 1

)
.

To find the best pivot for the first column, we find the row with the largest absolute value
in the pivot position. Here we only have two rows, but in general you would compare
potential pivots in all n rows. Since the 1 in the second row has larger magnitude than
the ε in the first row, we interchange rows. We then proceed with the elimination step:(

1 −1 1
ε 2 4

)
→
(

1 −1 1
0 2 + ε 4− ε

)
→
(

1 −1 1
0 2 4

)
,

where the last step results from round-off error. Now, back substitution results in

x2 =
4
2
= 2, x1 = 1 + x2 = 3,

a very close approximation to the exact solution.
This method is called partial pivoting. Full pivoting also implements column exchanges,

but this unnecessarily slows down the computation and is usually not implemented.

56

https://youtu.be/WU3tSs5q1MM

WEEK III. MATRIX ALGEBRA 57

Problems for Lecture 25

1. Consider again the system of equations given by

εx1 + 2x2 = 4, x1 − x2 = 1.

The solution of these equations using Gaussian elimination with partial pivoting is found
to be

x2 =
4− ε

2 + ε
, x1 = 1 + x2.

Compute the value of x2 and x1 using Matlab as a calculator. Now, repeat this calculation
for the system of equations given by

2εx1 + 2x2 = 4, x1 − x2 = 1.

Solutions to the Problems

Lecture 26 | LU decomposition
with partial pivoting

View this lecture on YouTube

The LU decomposition can be generalized to include partial pivoting. For example, con-
sider

A =

−2 2 −1
6 −6 7
3 −8 4

 .

We interchange rows to obtain the largest pivot; that is,

A→

 6 −6 7
−2 2 −1

3 −8 4

 = P12A, where P12 =

0 1 0
1 0 0
0 0 1

is the permutation matrix that interchanges rows one and two. The elimination step is
then

P12A→

6 −6 7
0 0 4/3
0 −5 1/2

 = M2M1P12A, where M2M1 =

 1 0 0
1/3 1 0
−1/2 0 1

 .

The final step requires one more row interchange:

M2M1P12A→

6 −6 7
0 −5 1/2
0 0 4/3

 = P23M2M1P12A = U.

Since the permutation matrices corresponding to a single row exchange are their own
inverses, we can write our result as

(P23M2M1P23)P23P12A = U.

Multiplication of M2M1 on the left by P23 interchanges rows two and three, while multi-
plication on the right by P23 interchanges columns two and three. That is,

P23

 1 0 0
1/3 1 0
−1/2 0 1

P23 =

 1 0 0
−1/2 0 1

1/3 1 0

P23 =

 1 0 0
−1/2 1 0

1/3 0 1

 .

58

https://youtu.be/WgaFycuL8z0

WEEK III. MATRIX ALGEBRA 59

The net result on M2M1 is an interchange of the nondiagonal elements 1/3 and −1/2. We
can then multiply by the inverse of (P23M2M1P23) to obtain

P23P12A = (P23M2M1P23)
−1U = LU,

where

L =

 1 0 0
1/2 1 0
−1/3 0 1

 , U =

6 −6 7
0 −5 1/2
0 0 4/3

Instead of L, MATLAB will write this as

A = (P12P23L)U,

where the permutation matrices times the lower triangular matrix is called a “psycholog-
ically lower triangular matrix,” and is given by

P12P23L =

−1/3 0 1
1 0 0

1/2 1 0

 .

WEEK III. MATRIX ALGEBRA 60

Problems for Lecture 26

1. Let

A =

−3 2 −1
6 −6 7
3 −4 4

 .

Using Gaussian elimination with partial pivoting, find the (PL)U decomposition of A,
where U is an upper triangular matrix and (PL) is a psychologically lower triangular
matrix.

Solutions to the Problems

Lecture 27 | Operation counts
View this lecture on YouTube

To estimate the computational time of an algorithm, one counts the number of oper-
ations required (multiplications, additions, etc.). Usually, one is interested in how an
algorithm scales with the size of the problem. One can easily time a small problem, and
then estimate the computational time required for a much larger problem.

For example, suppose one is multiplying two full n× n matrices. The calculation of
each element requires n multiplications and n − 1 additions. There are n2 elements to
compute so that the total operation counts are n3 multiplications and n2(n− 1) additions.

For large n, we might want to know how much longer the computation will take if n
is doubled. What matters most is the fastest-growing, leading-order term in the operation
count. In this matrix multiplication example, the leading-order term grows like n3, and
we say that the algorithm scales like O(n3), which is read as “big Oh of n cubed.” When
using the big-Oh notation, we drop both lower-order terms and constant multipliers.

The big-Oh notation tells us how the computational time of an algorithm scales. For
example, suppose that the multiplication of two large n× n matrices took a computational
time of Tn seconds. With the known operation count going like O(n3), we can write
Tn = kn3 for some constant k. To determine how much longer the multiplication of two
2n× 2n matrices will take, we write

T2n = k(2n)3 = 8kn3 = 8Tn,

so that doubling the size of the matrix is expected to increase the computational time by
a factor of 23 = 8.

Running Matlab on my computer, the multiplication of two 4096× 4096 matrices took
about 1.1 sec. The multiplication of two 8192× 8192 matrices took about 7.9 sec, which is
a bit more than 7 times longer. Timing of code in Matlab can be found using the built-in
stopwatch functions tic and toc.

61

https://youtu.be/3yLy9vUihTc

WEEK III. MATRIX ALGEBRA 62

Problems for Lecture 27

1. A genetic model of recombination is solved using a computational algorithm that scales
like O(3L), where L is the number of loci modeled. If it takes 10 sec to compute recombi-
nation when L = 15, estimate how long it takes to compute recombination when L = 16.

Solutions to the Problems

Lecture 28 | Operation counts for
Gaussian elimination

View this lecture on YouTube

When counting the number of operations required for an algorithm, three well-known
summation formulas will come in handy. They are

n

∑
k=1

1 = n,
n

∑
k=1

k =
1
2

n(n + 1),
n

∑
k=1

k2 =
1
6

n(2n + 1)(n + 1).

To determine the operation counts for Gaussian elimination used to solve a system of
n equations and n unknowns, consider an elimination step with the pivot on the diagonal
in the ith row and column. There are both n− i rows below the pivot and n− i columns
to the right of the pivot. To perform elimination on one row, each matrix element to the
right of the pivot must be multiplied by a factor and added to the row underneath. This
must be done for all the rows. There are therefore (n− i)(n− i) multiplication-additions
to be done for a pivot . I will count a multiplication-addition as one operation.

To find the total operation count, we need to perform elimination using n− 1 pivots,
so that

op. counts =
n−1

∑
i=1

(n− i)2 = (n− 1)2 + (n− 2)2 + . . . (1)2

=
n−1

∑
i=1

i2 =
1
6
(n− 1)(2n− 1)n.

The leading-order term is n3/3, and we say that Gaussian elimination scales like O(n3).
Since LU decomposition with partial pivoting is essentially Gaussian elimination, it will
have the same scaling. Double the number of equations and unknowns, and LU decom-
position will take approximately eight times longer.

63

https://youtu.be/WLqtv-fr0R4

WEEK III. MATRIX ALGEBRA 64

Problems for Lecture 28

1. Derive the following summation identities:

a)
n

∑
k=1

1 = n;

b)
n

∑
k=1

k =
1
2

n(n + 1);

c)
n

∑
k=1

k2 =
1
6

n(2n + 1)(n + 1).

Solutions to the Problems

Lecture 29 | Operation counts for
forward and backward
substitution

View this lecture on YouTube

Once the LU decomposition of a matrix A is known, the solution of Ax = b can pro-
ceed by forward and backward substitution. Here, we compute the operation counts for
backward substitution. Forward substitution will be similar. The matrix equation to be
solved is of the form

a11 a12 · · · a1(n−1) a1n

0 a22 · · · a2(n−1) a2n
...

...
. . .

...
...

0 0 · · · a(n−1)(n−1) a(n−1)n

0 0 · · · 0 ann

x1

x2
...

xn−1

xn

=

b1

b2
...

bn−1

bn

.

The solution for xi is found after solving for xj with j > i. The explicit solution is given
by

xi =
1
aii

(
bi −

n

∑
j=i+1

aijxj

)
.

The solution for xi requires n− i + 1 multiplications and n− i additions, and we need to
solve for n values of xi. Counting just multiplications, we have

op. counts =
n

∑
i=1

n− i + 1 = n + (n− 1) + · · ·+ 1

=
n

∑
i=1

i =
1
2

n(n + 1).

The leading-order term is n2/2, and forward substitution has a similar scaling. The oper-
ation counts for a forward and backward substitution, therefore, scales like O(n2).

For n large, n2 grows much slower than n3, and a forward and backward substitution
should be substantially faster than Gaussian elimination. If the matrix is fixed and the
right-hand side keeps changing — for example, in a time-dependent computation where
the matrix is independent of time but the right-hand side changes over time — a fast
computation would first find the LU decomposition of the matrix, and then solve the
recurring systems of equations by forward and backward substitution.

65

https://youtu.be/_IbtdLqeisg

WEEK III. MATRIX ALGEBRA 66

Problems for Lecture 29

1. Solve the following lower triangular system for xi in terms of xj, j < i:

a11 0 · · · 0 0
a21 a22 · · · 0 0
...

...
. . .

...
...

a(n−1)1 a(n−1)2 · · · a(n−1)(n−1) 0
an1 an2 · · · an(n−1) ann

x1

x2
...

xn−1

xn

=

b1

b2
...

bn−1

bn

.

Count the total number of multiplication-additions required for a complete solution.

Solutions to the Problems

Lecture 30 | Eigenvalue power
method

View this lecture on YouTube

The power method is a fast iterative algorithm to find the largest magnitude eigenvalue of
a matrix and its associated eigenvector. Suppose that A is an n-by-n matrix with n distinct
real eigenvalues, ordered such that |λ1| > |λ2| > · · · > |λn|, and with corresponding
linearly independent eigenvectors e1, e2, . . . en. Then any vector x0 can be written as linear
combination of the eigenvectors as

x0 = c1e1 + c2e2 + . . . cnen =
n

∑
i=1

ciei.

With x1 = Ax0, we have

x1 = A
n

∑
i=1

ciei =
n

∑
i=1

ciAei =
n

∑
i=1

ciλiei.

Repeated multiplication by A, with xp = Apx0, yields

xp =
n

∑
i=1

ciλ
p
i ei = λ

p
1

(
c1e1 +

n

∑
i=2

ci(λi/λ1)
pei

)
.

Since for i ≥ 2,
lim
p→∞

(λi/λ1)
p = 0,

a good approximation for large enough values of p is

xp ≈ c1λ
p
1 e1.

To find the dominant eigenvalue, we write

xT
pxp+1

xT
pxp

=

(
c1λ

p
1 eT

1

) (
c1λ

p+1
1 e1

)
(

c1λ
p
1 eT

1

) (
c1λ

p
1 e1

) =
c2

1λ
2p+1
1 eT

1 e1

c2
1λ

2p
1 eT

1 e1
= λ1.

The corresponding eigenvector is found from xp, which can be normalized as you like.
In practice, after many iterations underflow (when λ1 < 1) or overflow (when λ1 > 1)

can occur, and it is best to normalize the vectors xp after each iteration. A simple method
of normalization is

xp →
xp

(xT
pxp)1/2 .

67

https://youtu.be/_PDyi5BVY-E

WEEK III. MATRIX ALGEBRA 68

Problems for Lecture 30

1. The two largest (in absolute value) eigenvalues of an n-by-n matrix with real eigenval-
ues are λ1 = 1 and λ2 = 1/2. Give a rough estimate of how many iterations of the power
method is required for convergence to an error of less than 10−8.

Solutions to the Problems

Lecture 31 | Eigenvalue power
method (example)

View this lecture on YouTube

Use the power method to determine the dominant eigenvalue and corresponding eigenvector of
the matrix

A =

(
6 5
4 5

)
.

For reference, the eigenvalues and eigenvectors of this matrix are given by

λ1 = 10, v1 =

(
5/4

1

)
; λ2 = 1, v2 =

(
1
−1

)
.

We apply here the power method without normalizing the vectors after each itera-
tion. A computer solution should normalize vectors to avoid overflow or underflow. The
assumed initial vector and first iteration is given by

x0 =

(
1
0

)
, x1 = Ax0 =

(
6
4

)
.

Continuing,

x2 =

(
6 5
4 5

)(
6
4

)
=

(
56
44

)
; x3 =

(
6 5
4 5

)(
56
44

)
=

(
556
444

)
.

Two more iterations give

x4 =

(
6 5
4 5

)(
556
444

)
=

(
5,556
4,444

)
; x5 =

(
6 5
4 5

)(
5,556
4,444

)
=

(
55,556
44,444

)
.

The dominant eigenvalue is approximated from

λ1 ≈
xT

4 x5

xT
4 x4

=
506,178,271
50,618,272

= 9.99991 ≈ 10;

and the corresponding eigenvector is approximated by x5. Dividing by the second com-
ponent,

v1 =

(
55,556/44,444

1

)
≈
(

1.25002
1

)
≈
(

5/4
1

)
.

69

https://youtu.be/nKd0lu3yThg

WEEK III. MATRIX ALGEBRA 70

Problems for Lecture 31

1. Use the power method (without normalizing the vectors after each iteration) to deter-
mine the dominant eigenvalue and corresponding eigenvector of the matrix

A =

(
−5 6

5 −4

)
.

Solutions to the Problems

Lecture 32 | Matrix algebra in
Matlab

View this lecture on YouTube

In Matlab, the solution to the matrix equation Ax = b is found by typing x=A\b. The
backslash operator can solve n equations and n unknowns, or a least-squares problem
that has more equations than unknowns. For example, to solve the following system of
three linear equations and three unknowns:−3 2 −1

6 −6 7
3 −4 4

x1

x2

x3

 =

−1
−7
−6

 ,

we type
>> A=[-3 2 -1; 6 -6 7; 3 -4 4]; b=[-1;-7;-6];

>> x=A\b

x =

2

2

-1

>>

To solve the toy least-squares problem of three equations and two unknowns:1 1
1 2
1 3

(x1

x2

)
=

1
3
2

 ,

we type

>> A=[1 1; 1 2; 1 3]; b=[1; 3; 2];

>> x=A\b

x =

1.0000

0.5000

>>

For a problem with one matrix and many different right-hand-sides, one first finds A =

LU by a function call, and then solves for x using x=U\(L\b). For example, to solve again
the system of three linear equations and three unknowns, we could type
>> A=[-3 2 -1; 6 -6 7; 3 -4 4]; b=[-1; -7; -6];

>> [L U] = lu(A);

>> x = U\(L\b)

x =

71

https://youtu.be/QimxbtqF8es

WEEK III. MATRIX ALGEBRA 72

2

2

-1

>>

Matlab can also solve the eigenvalue problem Ax = λx. The function eig.m can be used
to find all the eigenvalues and eigenvectors of A. For example, to find all the eigenvalues
of a two-by-two matrix A, we type
>> A=[0 1; 1 0];

>> lambda = eig(A)

lambda =

-1

1

>>

To also find the eigenvectors, we type
>> A=[0 1; 1 0];

>> [V, D] = eig(A)

V =

-0.7071 0.7071

0.7071 0.7071

D =

-1 0

0 1

>>

The latter function call finds two matrices V and D that satisfy the matrix equation
AV = VD.

WEEK III. MATRIX ALGEBRA 73

Problems for Lecture 32

1. Let

A =

−3 2 −1
6 −6 7
3 −4 4

 .

Use Matlab to find the LU decomposition of A, where U is an upper triangular matrix
and L is a psychologically lower triangular matrix.

2. Use Matlab to find the eigenvalues and eigenvectors of the matrix

A =

(
−5 6

5 −4

)
.

Normalize the eigenvectors so that their second component is one.

Solutions to the Problems

Lecture 33 | Systems of nonlinear
equations

View this lecture on YouTube

A system of nonlinear equations can be solved using Newton’s method and matrix al-
gebra. We derive the method for a system of two equations and two unknowns. Suppose
that we want to solve

f (x, y) = 0, g(x, y) = 0,

for the unknowns x and y. To solve, we construct two parallel sequences x0, x1, x2, . . .
and y0, y1, y2, . . . that converge to the root. To construct these sequences, we Taylor se-
ries expand f (xn+1, yn+1) and g(xn+1, yn+1) about the point (xn, yn). Using the partial
derivatives fx = ∂ f /∂x, fy = ∂ f /∂y and those for g, the two-dimensional Taylor series
expansions, displaying up to the linear terms, are given by

f (xn+1, yn+1) = f (xn, yn) + (xn+1 − xn) fx(xn, yn) + (yn+1 − yn) fy(xn, yn) + . . . ,

g(xn+1, yn+1) = g(xn, yn) + (xn+1 − xn)gx(xn, yn) + (yn+1 − yn)gy(xn, yn) +

To obtain Newton’s method, we set f (xn+1, yn+1) = g(xn+1, yn+1) = 0, and drop higher-
order terms above linear. It is best to define the unknowns as

∆xn = xn+1 − xn, ∆yn = yn+1 − yn,

so that the iteration equations will be given by

xn+1 = xn + ∆xn, yn+1 = yn + ∆yn.

The linear equations to be solved for ∆xn and ∆yn, in matrix form, are(
fx fy

gx gy

)(
∆xn

∆yn

)
= −

(
f
g

)
,

where f , g, fx, fy, gx and gy are all evaluated at the point (xn, yn). The two-equation case
is easily generalized to n equations. The matrix of partial derivatives is called the Jacobian
matrix.

Each step of the iteration requires solving the n-by-n system of linear equations using
Gaussian elimination.

74

https://youtu.be/wrQA1_nei7w

WEEK III. MATRIX ALGEBRA 75

Problems for Lecture 33

1. The algorithm for solving the system of two equations and two unknowns,

f (x, y) = 0, g(x, y) = 0,

is given by the following two-step process.

1. Solve the linear system for ∆xn and ∆yn given by(
fx fy

gx gy

)(
∆xn

∆yn

)
=

(
− f
−g

)
.

2. Advance the iterative solution, using

xn+1 = xn + ∆xn, yn+1 = yn + ∆yn.

Write down the corresponding algorithm for three equations and three unknowns.

Solutions to the Problems

Lecture 34 | Systems of nonlinear
equations (example)

View this lecture on YouTube

The Lorenz equations — a system of nonlinear odes that pioneered the study of chaos
— are given by

ẋ = σ(y− x), ẏ = x(r− z)− y, ż = xy− βz,

where σ, β and r are constant parameters. The fixed-point solutions of these equations
satisfy ẋ = ẏ = ż = 0. Although the fixed-point solutions can be found analytically, here
we will illustrate Newton’s method. We solve

σ(y− x) = 0, rx− y− xz = 0, xy− βz = 0.

This is a root-finding problem, where we are solving f (x, y, z) = g(x, y, z) = h(x, y, z) = 0,
and

f (x, y, z) = σ(y− x), g(x, y, z) = rx− y− xz, h(x, y, z) = xy− βz.

The Jacobian matrix is found from the partial derivatives, computed to be

fx = −σ, fy = σ, fz = 0,

gx = r− z, gy = −1, gz = −x,

hx = y, hy = x, hz = −β.

Using the Jacobian matrix, the iteration equation for Newton’s method is given by −σ σ 0
r− zn −1 −xn

yn xn −β

∆xn

∆yn

∆zn

 = −

 σ(yn − xn)

rxn − yn − xnzn

xnyn − βzn

 ,

with
xn+1 = xn + ∆xn, yn+1 = yn + ∆yn, zn+1 = zn + ∆zn.

76

https://youtu.be/IaZPy6noXc8

WEEK III. MATRIX ALGEBRA 77

Problems for Lecture 34

1. The fixed-point solutions of the Lorenz equations satisfy

σ(y− x) = 0, rx− y− xz = 0, xy− βz = 0.

Find analytically three fixed-point solutions for (x, y, z) as a function of the parameters
σ, β and r. What are the numerical values for the fixed points when r = 28, σ = 10 and
β = 8/3?

2. Complete a MATLAB code that uses Newton’s method to determine the fixed-point
solutions of the Lorenz equations. Solve using the parameters r = 28, σ = 10 and β = 8/3.
Use as your three initial guesses x = y = z = 1, x = y = z = 10 and x = y = z = −10.

Solutions to the Problems

Lecture 35 | Project III: Fractals
from the Lorenz
equations

View this lecture on YouTube

The fixed points of the Lorenz equations satisfy

σ(y− x) = 0, rx− y− xz = 0, xy− βz = 0.

Analytical solution of the fixed-point equations yields the three roots,

(x, y, z) = (0, 0, 0), (±
√

β(r− 1),±
√

β(r− 1), r− 1).

Implementation of Newton’s method to determine the solution of the fixed-point equa-
tions requires iteration of −σ σ 0

r− zn −1 −xn

yn xn −β

∆xn

∆yn

∆zn

 = −

 σ(yn − xn)

rxn − yn − xnzn

xnyn − βzn

 ,

with
xn+1 = xn + ∆xn, yn+1 = yn + ∆yn, zn+1 = zn + ∆zn.

We may suppose that an initial value given by (x0, y0, z0) will converge to one of
the three roots of the fixed-point equations. By mapping a grid of initial values to the
converged root, an image of a fractal may result. Your third project is to compute an
instance of one of these fractals.

78

https://youtu.be/4fV2fm6whEQ

WEEK III. MATRIX ALGEBRA 79

Problems for Lecture 35

1. Determine a fractal that arises from using Newton’s method to compute the fixed-point
solutions of the Lorenz equations. Use the parameter values r = 28, σ = 10 and β = 8/3.
Initial values (x0, z0) are taken on a grid in the x-z plane with always y0 = 3

√
2. For

assessment purposes, the computational grid and the graphics code will be given in the
Learner Template. To pass the assessment, every pixel in your figure needs to be colored
correctly.

(Hint: Some grid points may require as many as 33 Newton iterations to converge while
others may require as few as three. Unfortunately, if you uniformly use 33 Newton itera-
tions at every grid point, the Matlab Grader may time out. You can accelerate your code
by using a while loop instead of a for loop.)

Solutions to the Problems

Week IV

Quadrature and Interpolation

In this week’s lectures, we learn about numerical integration—also called quadrature—and func-
tion interpolation. We begin by learning the basics of quadrature, which include the elementary
formulas for the trapezoidal rule and Simpson’s rule, and how these formulas can be used to de-
velop composite integration rules. We then discuss the more sophisticated method of Gaussian
quadrature, and learn how to construct an adaptive integration routine in which the software itself
determines the appropriate integration step size. Finally, we learn how to use the Matlab function
integral.m.

In the second-half of this week we learn about interpolation. Given known points in the plane
arising from a smooth function, a good interpolation routine will be able to estimate the values be-
tween these points. Linear interpolation is widely used, particularly when plotting data consisting
of many points. The more sophisticated method of cubic splines may be a better choice, particularly
if the points are more sparse.

Your programming project will be to write a Matlab code to compute the zeros of the Bessel
functions. This requires combining both quadrature and root-finding routines.

80

Lecture 36 | Midpoint rule
View this lecture on YouTube

Elementary integration formulas are derived by integrating f (x) from 0 to h, and these
formulas serve as building blocks for integrating over any interval. Here, we derive the
midpoint rule.

We define the definite integral Ih to be

Ih =
∫ h

0
f (x)dx.

To perform this integral, we Taylor series expand f (x) about the value x = h/2:

f (x) = f (h/2) + (x− h/2) f ′(h/2) +
(x− h/2)2

2
f ′′(h/2)

+
(x− h/2)3

6
f ′′′(h/2) +

(x− h/2)4

24
f ′′′′(h/2) +

Integrating both sides from zero to h, and using the definition of Ih, we have

Ih =
∫ h

0

(
f (h/2) + (x− h/2) f ′(h/2) +

(x− h/2)2

2
f ′′(h/2)

+
(x− h/2)3

6
f ′′′(h/2) +

(x− h/2)4

24
f ′′′′(h/2) + . . .

)
dx.

To perform the integration, we let y = x− h/2 so that dy = dx, and simplify according to
whether each term in the integrand is even or odd. We have

Ih =
∫ h/2

−h/2

(
f (h/2) + y f ′(h/2) +

y2

2
f ′′(h/2) +

y3

6
f ′′′(h/2) +

y4

24
f ′′′′(h/2) + . . .

)
dy

= 2
∫ h/2

0

(
f (h/2) +

y2

2
f ′′(h/2) +

y4

24
f ′′′′(h/2) + . . .

)
dy.

Using ∫ h/2

0
y2dy = h3/24,

∫ h/2

0
y4dy = h5/160,

we obtain the midpoint rule, given by

Ih = h f (h/2) +
h3

24
f ′′(h/2) +

h5

1920
f ′′′′(h/2) + . . .

= h f (h/2) + O(h3).

81

https://youtu.be/9RZZgQl5TpU

WEEK IV. QUADRATURE AND INTERPOLATION 82

Problems for Lecture 36

1. The area of a rectangle with base h and height f (h/2) is given by h f (h/2). Draw a
graph illustrating the midpoint rule.

2. Let f (x) = a + bx + cx2, where a, b and c are constants. Prove by explicit calculation
that ∫ h

0
f (x) dx = h f (h/2) +

h3

24
f ′′(h/2).

Solutions to the Problems

Lecture 37 | Trapezoidal rule
View this lecture on YouTube

The trapezoidal rule is one of the most useful integration formulas. From the Taylor
series expansion of f (x) about x = h/2, we have

f (0) = f (h/2)− h
2

f ′(h/2) +
h2

8
f ′′(h/2)− h3

48
f ′′′(h/2) +

h4

384
f ′′′′(h/2) + . . . ,

f (h) = f (h/2) +
h
2

f ′(h/2) +
h2

8
f ′′(h/2) +

h3

48
f ′′′(h/2) +

h4

384
f ′′′′(h/2) +

Adding and multiplying by h/2 we obtain

h
2
(

f (0) + f (h)
)
= h f (h/2) +

h3

8
f ′′(h/2) +

h5

384
f ′′′′(h/2) +

We now substitute for h f (h/2) using the midpoint rule formula:

h
2
(

f (0)+ f (h)
)
=

(
Ih −

h3

24
f ′′(h/2)− h5

1920
f ′′′′(h/2)

)
+

h3

8
f ′′(h/2)+

h5

384
f ′′′′(h/2)+ . . . ,

and solving for Ih, we obtain the trapezoidal rule,

Ih =
h
2
(

f (0) + f (h)
)
− h3

12
f ′′(h/2)− h5

480
f ′′′′(h/2) + . . .

=
h
2
(

f (0) + f (h)
)
+ O(h3).

A graphical representa-
tion of the trapezoidal rule
is shown on the right, where
the integral is approximated
by the area of the drawn
trapezoid.

83

https://youtu.be/K4x3aBY62hc

WEEK IV. QUADRATURE AND INTERPOLATION 84

Problems for Lecture 37

1. Derive the trapezoidal rule by approximating f (x) by the straight line connecting the
points (0, f (0)) and (h, f (h)):

f (x) ≈ f (0) +
f (h)− f (0)

h
x.

Solutions to the Problems

Lecture 38 | Simpson’s rule
View this lecture on YouTube

To obtain Simpson’s rule, we combine the midpoint and trapezoidal rule to eliminate
the error term proportional to h3. The midpoint and trapezoidal rules are given by

Ih = h f (h/2) +
h3

24
f ′′(h/2) +

h5

1920
f ′′′′(h/2) + . . .

Ih =
h
2
(

f (0) + f (h)
)
− h3

12
f ′′(h/2)− h5

480
f ′′′′(h/2) +

Multiplying the midpoint rule by two and adding it to the trapezoidal rule, we obtain

3Ih = h
(

2 f (h/2) +
1
2
(

f (0) + f (h)
))

+ h5
(

2
1920

− 1
480

)
f ′′′′(h/2) + . . . ,

or

Ih =
h
6
(

f (0) + 4 f (h/2) + f (h)
)
− h5

2880
f ′′′′(h/2) + . . .

=
h
6
(

f (0) + 4 f (h/2) + f (h)
)
+ O(h5).

Usually, Simpson’s rule is written by considering the three consecutive points 0, h and 2h.
Transforming h→ 2h, we obtain the more standard result

I2h =
h
3
(

f (0) + 4 f (h) + f (2h)
)
− h5

90
f ′′′′(h) + . . .

=
h
3
(

f (0) + 4 f (h) + f (2h)
)
+ O(h5).

85

https://youtu.be/Z6-W6AXqFFs

WEEK IV. QUADRATURE AND INTERPOLATION 86

Problems for Lecture 38

1. Derive Simpson’s rule by approximating f (x) by a quadratic polynomial connecting
the points (0, f (0)), (h, f (h)) and (2h, f (2h)).

a) Let g(x) = a + bx + cx2. Determine the values of a, b and c such that g(x) passes
through the points (0, f (0)), (h, f (h)) and (2h, f (2h)).

b) Use f (x) ≈ g(x) to derive Simpson’s rule.

Solutions to the Problems

Lecture 39 | Composite
quadrature rules

View this lecture on YouTube
We apply our elementary integration formulas to compute

I =
∫ b

a
f (x) dx.

Suppose that the function f (x) is known at the points a = x0, x1, . . . , xn = b. Define

fi = f (xi), hi = xi+1 − xi.

Then the integral I may be decomposed as

∫ b

a
f (x)dx =

n−1

∑
i=0

∫ xi+1

xi

f (x)dx =
n−1

∑
i=0

∫ hi

0
f (xi + s)ds,

where the last equality arises from the change-of-variables s = x − xi. Applying the
trapezoidal rule to the integral, we have

∫ b

a
f (x)dx =

1
2

n−1

∑
i=0

hi (fi + fi+1) ,

which is often useful for integrating experimental data.
If the points are evenly spaced, we have hi = h = (b − a)/n, and the composite

trapezoidal rule becomes

∫ b

a
f (x)dx =

h
2
(f0 + 2 f1 + · · ·+ 2 fn−1 + fn) .

The first and last terms have a multiple of one, all other terms have a multiple of two, and
the entire sum is multiplied by h/2.

Similarly, the composite Simpson’s rule for evenly space points is found to be

∫ b

a
f (x)dx =

h
3
(f0 + 4 f1 + f2) +

h
3
(f2 + 4 f3 + f4) + · · ·+

h
3
(fn−2 + 4 fn−1 + fn)

=
h
3
(f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · ·+ 4 fn−1 + fn) .

Note that n must be even for this scheme to work. The first and last terms have a multiple
of one, the odd indexed terms have a multiple of 4, the even indexed terms have a multiple
of 2, and the entire sum is multiplied by h/3.

For composite rules, the error for each elementary interval sums so that the global
error increases by a factor of 1/h. The trapezoidal rule and Simpson’s rule have global
error h2 and h4, respectively.

87

https://youtu.be/6x28YeHIkc4

WEEK IV. QUADRATURE AND INTERPOLATION 88

Problems for Lecture 39

1. Simpson’s 3/8 rule has elementary formula given by

∫ 3h

0
f (x) dx =

3h
8

(f (0) + 3 f (h) + 3 f (2h) + f (3h)) .

Suppose that f (x) is known at the equally spaced points a = x0, x1, . . . , xn = b, and n is
a multiple of three. Let fi = f (xi) and h = xi+1 − xi. Find the formula for the composite
Simpson’s 3/8 rule.

Solutions to the Problems

Lecture 40 | Gaussian quadrature
View this lecture on YouTube

A general Gaussian quadrature rule is of the form

∫ b

a
W(x) f (x) dx ≈

n

∑
i=1

wi f (xi),

where W(x) is called the weight function, wi are called the weights, and xi are called
the nodes. The weights and nodes are chosen so that the integral is exact for polynomial
functions f (x) of degree less than or equal to 2n − 1. Variations include Chebyshev-
Gauss, Laguerre-Gauss, and Hermite-Gauss quadrature. The definite integrals associated
with these Gaussian quadratures are given, respectively, by

∫ 1

−1

1√
1− x2

f (x) dx,
∫ ∞

0
e−x f (x) dx,

∫ ∞

−∞
e−x2

f (x) dx.

The most straightforward example is the Legendre-Gauss quadrature rule, with the two-
point formula given by ∫ 1

−1
f (x) dx ≈ w1 f (x1) + w2 f (x2).

To determine the weights and the nodes, we require the rule to be exact for the polynomial
basis functions f (x) = 1, x, x2 and x3. Substituting in these functions yields the four
equations with four unknowns given by

2 = w1 + w2, 0 = w1x1 + w2x2, 2/3 = w1x2
1 + w2x2

2, 0 = w1x3
1 + w2x3

2.

If we argue from symmetry that x1 = −x2 and w1 = w2, then a solution is readily found
to be w1 = w2 = 1, and x1 = −1/

√
3 and x2 = 1/

√
3.

89

https://youtu.be/w2xjlPwYock

WEEK IV. QUADRATURE AND INTERPOLATION 90

Problems for Lecture 40

1. Determine the weights and nodes of the three-point Legendre-Gauss quadrature rule.
You may assume from symmetry that x1 = −x3, w1 = w3, and x2 = 0.

Solutions to the Problems

Lecture 41 | Adaptive quadrature
View this lecture on YouTube

Adaptive quadrature lets the algorithm itself determine the integration step size required
to meet a user-specified precision. Even more importantly, the step size need not be con-
stant over the entire region of integration. Using the trapezoidal rule, we sketch how
adaptive quadrature is implemented.

We begin integration of I =
∫ b

a f (x)dx at what is called Level 1. Let h = b− a. Then
integration from a to b using the trapezoidal rule is given by

I =
h
2
(f (a) + f (b))− h3

12
f ′′(ξ),

where the Taylor remainder theorem states that ξ is a number between a and b. We now
add a point c midway between a and b and apply the composite trapezoidal rule to obtain

I =
h
4
(f (a) + 2 f (c) + f (b))− (h/2)3

12
f ′′(ξl)−

(h/2)3

12
f ′′(ξr),

where ξl is a number between a and c and ξr is a number between c and b.
We can define our two approximations to the integral by

S1 =
h
2
(

f (a) + f (b)
)
, S2 =

h
4
(

f (a) + 2 f (c) + f (b)
)
,

and our two associated errors by

E1 = − h3

12
f ′′(ξ), E2 = − h3

23 · 12
(

f ′′(ξl) + f ′′(ξr)
)
.

If we make the approximation that f ′′(ξ) ≈ f ′′(ξl) ≈ f ′′(ξr), then E1 ≈ 4E2. Then since
S1 + E1 = S2 + E2, we can eliminate E1 to find an estimate for E2:

|E2| ≈ |S2 − S1|/3.

If |E2| is less than some specified tolerance, then we accept S2 as I. Otherwise, we proceed
to Level 2.

The computation at Level 2 starts with the two integration intervals a to c and c to
b, and repeats the above procedure independently on both intervals. Integration can be
stopped on either interval provided the estimated error on that interval is less than one-
half the specified tolerance (since the sum of the errors on both intervals must be less
than the tolerance). Otherwise, either interval can proceed to Level 3, and so on, until the
global error estimate is less than the tolerance.

91

https://youtu.be/U4NUXAwwR8E

WEEK IV. QUADRATURE AND INTERPOLATION 92

Problems for Lecture 41

1. Consider I =
∫ h

0 f (x) dx with f (x) = x3. Using the trapezoidal rule, compute S1, S2,
E1 and E2 and show that E1 = 4E2.

Solutions to the Problems

Lecture 42 | Quadrature in
Matlab

View this lecture on YouTube

The MATLAB function integral.m performs adaptive quadrature by combining a seven-
point Legendre-Gauss quadrature rule with a fifteen-point Kronrod rule. We will skip the
details here.

If S is the computed value of the integral and I is the (unknown) exact value, then
the absolute error is defined as |S − I| and the relative error is defined as |(S − I)/I|.
The user can specify both an absolute error tolerance and a relative error tolerance, with
default values given by 10−10 and 10−6, respectively. MATLAB will refine the integration
intervals until either the absolute or relative error tolerance is lower than the default (or
specified) values.

In practice, one begins a calculation with the default error tolerances and if the accu-
racy of the solution is unsatisfactory, then the error tolerances can be lowered. Consult the
Matlab help page to learn how to do this. A good rule of thumb is to lower each error
tolerance by a factor of ten until you are satisfied. The absolute error tolerance usually
comes into play when the integral is close to zero.

The default call is I=integral(f,xmin,xmax), where f is the integrand and xmin and
xmax are the limits of integration. The passing of f to integral.m is similar to what we
have done before.

Compute the following integral:

I =
∫ ∞

0
e−ax2

(ln x)2 dx, a = π.

The following Matlab commands compute the integral:
>> f = @(x,a) exp(-a*x.^2).*log(x).^2;

>> a = pi; I = integral(@(x) f(x,a), 0, Inf)

I =

1.8245

>>

93

https://youtu.be/wbfzKRM_6lI

WEEK IV. QUADRATURE AND INTERPOLATION 94

Problems for Lecture 42

1. Consider the Fresnel integrals, defined by

C(t) =
∫ t

0
cos

(1
2

πx2)dx, S(t) =
∫ t

0
sin
(1

2
πx2)dx.

Write a script using integral.m to plot a Cornu spiral, which is a smooth curve of C(t)
versus S(t). Plot your solution over the range −8 ≤ t ≤ 8.

Solutions to the Problems

Lecture 43 | Interpolation
View this lecture on YouTube

Given the y-values of a function sampled at an ordered sequence of x-values, i.e., (x0, y0),
(x1, y1), . . . , (xn, yn), we want to estimate the y-value for some other value of x. When
x0 ≤ x ≤ xn, the problem is called interpolation; when x < x0 or x > xn, the problem is
called extrapolation and is much more perilous. The problem of interpolation is basically
one of drawing a smooth curve that passes through the given n + 1 points.

It is possible to interpolate n + 1 known points by a unique polynomial of degree
n. With only two points, the polynomial is a linear function; with only three points,
the polynomial is a quadratic function, and so on. Although low-order polynomials are
sometimes helpful when interpolating only a few points, high-order polynomials tend to
over-oscillate and not be useful.

In this course, we will learn about the more widely-used piecewise polynomial in-
terpolation. The two most popular are piecewise linear interpolation and cubic spline
interpolation. The first makes use of linear polynomials, and the second cubic polynomi-
als. Piecewise linear interpolation is the default interpolation typically used when plotting
data, and we start here.

Suppose the interpolating function is y = g(x), and there are n + 1 points to interpo-
late. We construct the function g(x) out of n local linear polynomials. We write

g(x) = gi(x), for xi ≤ x ≤ xi+1,

where
gi(x) = ai(x− xi) + bi, for i = 0, 1, . . . , n− 1.

We now require y = gi(x) to pass through the endpoints (xi, yi) and (xi+1, yi+1). We have

yi = bi, yi+1 = ai(xi+1 − xi) + bi.

The solution for the coefficients of gi(x) is easily determined to be

ai =
yi+1 − yi
xi+1 − xi

, bi = yi.

Although piecewise linear interpolation is widely used, particularly in plotting routines,
it suffers from discontinuities in the derivative. This results in a function which doesn’t
look smooth if the points are too widely spaced. One may increase the number of function
evaluations, but sometimes the computational cost to do so is too high. In the next two
lectures we will learn about cubic spline interpolation that uses piecewise cubic polyno-
mials.

95

https://youtu.be/RpxoN9-i7Jc

WEEK IV. QUADRATURE AND INTERPOLATION 96

Problems for Lecture 43

1. Consider the points (0, 0), (1, 1) and (2, 1).

a) Find the quadratic polynomial that interpolates these points. What are the interpo-
lated y-values at x = 1/2 and x = 3/2?

b) Find the two piecewise linear polynomials that interpolate these points. What are
the interpolated y-values at x = 1/2 and x = 3/2?

c) Use Matlab to plot the three points and the two interpolating functions.

Solutions to the Problems

Lecture 44 | Cubic spline
interpolation (Part A)

View this lecture on YouTube

For cubic spline interpolation, we define piecewise cubic polynomials by

gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di, for i = 0 to n− 1 and xi ≤ x ≤ xi+1.

Requiring the global interpolating function y = g(x) to go through all n + 1 points and
be continuous results in the two constraints

gi(xi) = yi, gi(xi+1) = yi+1, for i = 0 to n− 1.

To achieve a smooth interpolation, we further require the first and second derivatives of
g(x) to be continuous. This results in the additional constraints

g′i(xi+1) = g′i+1(xi+1), g′′i (xi+1) = g′′i+1(xi+1), for i = 0 to n− 2.

There are n piecewise cubic polynomials gi(x) and each cubic polynomial has four free
coefficients, for a total of 4n coefficients. The number of constraining equations is 2n +

2(n− 1) = 4n− 2 so that we are missing two equations to obtain a unique solution. These
equations usually derive from some extra conditions imposed on g0(x) and gn−1(x). We
will discuss this in the next lecture.

We define now for convenience

hi = xi+1 − xi, ηi = yi+1 − yi, for i = 0 to n− 1.

Calculating the derivatives and substituting in the end points, our constraints lead directly
to the equations

di = yi, aih3
i + bih2

i + cihi = ηi, for i = 0 to n− 1;

3aih2
i + 2bihi + ci = ci+1, 6aihi + 2bi = 2bi+1, for i = 0 to n− 2.

It will be useful later for us to include a definition of the coefficient bn, which is now
missing. We simply extend the fourth of the above equations to i = n− 1 (and thus add
one more equation and one more coefficient). How to solve these equations will be the
focus of our next lecture.

97

https://youtu.be/LaolbjAzZvg

WEEK IV. QUADRATURE AND INTERPOLATION 98

Problems for Lecture 44

1. Let y = f (x) have known values (x0, y0), (x1, y1), . . . , (xn, yn), and define piecewise
cubic polynomials by

gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di, for i = 0 to n− 1 and xi ≤ x ≤ xi+1.

Suppose that the endpoint slopes f ′(x0) = y′0 and f ′(xn) = y′n are known. From these
two extra conditions, determine two extra constraints on the a, b and c coefficients.

Solutions to the Problems

Lecture 45 | Cubic spline
interpolation (Part B)

View this lecture on YouTube

We now solve for the a, b, c, and d coefficients. The equations are

di = yi, aih3
i + bih2

i + cihi = ηi, 3aihi + bi = bi+1, for i = 0 to n− 1;

3aih2
i + 2bihi + ci = ci+1, for i = 0 to n− 2.

We can use the third equation to eliminate ai:

ai =
1

3hi
(bi+1 − bi) , for i = 0 to n− 1.

Then the second equation becomes

ci =
1
hi

(
ηi − aih3

i − bih2
i

)
=

ηi
hi
− 1

3
hi (bi+1 + 2bi) , for i = 0 to n− 1.

Finally, eliminating the a and c coefficients from the last equation results, after some
algebra, in

1
3

hibi +
2
3
(hi + hi+1)bi+1 +

1
3

hi+1bi+2 =
ηi+1

hi+1
− ηi

hi
, for i = 0 to n− 2,

which is a system of n − 1 equations for the n + 1 unknowns b0, b1, . . . , bn. We can
represent these equations in matrix form as

. missing
1
3 h0

2
3 (h0 + h1)

1
3 h1 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . 1

3 hn−2
2
3 (hn−2 + hn−1)

1
3 hn−1

. missing

b0

b1
...

bn−1

bn

=

missing
η1
h1
− η0

h0
...

ηn−1
hn−1
− ηn−2

hn−2

missing

,

where the first and last equations are still to be determined. Once we solve for the b-
coefficients, all the other coefficients can be found and the interpolating polynomial is
determined.

99

https://youtu.be/4VpE9Tbie14

WEEK IV. QUADRATURE AND INTERPOLATION 100

The default way to specify the first and last equations is called the not-a-knot condition,
which assumes that

g0(x) = g1(x), gn−2(x) = gn−1(x).

Consider the first constraint. Now, two cubic polynomials are equal if at some fixed x,
the polynomials and their first three derivatives are equal. The cubic spline continuity
conditions already ensure that g0(x1) = g1(x1), g′0(x1) = g′1(x1) and g′′0 (x1) = g′′1 (x1).
Therefore, the two polynomials are equal provided g′′′0 (x1) = g′′′1 (x1), or a0 = a1. In terms
of the b coefficients, this condition is given by

h1b0 − (h0 + h1)b1 + h0b2 = 0,

which we can use as our missing first equation. A similar argument made for the second
constraint yields for the missing last equation

hn−1bn−2 − (hn−2 + hn−1)bn−1 + hn−2bn = 0.

WEEK IV. QUADRATURE AND INTERPOLATION 101

Problems for Lecture 45

1. Consider the points (0, 0), (1, 1), (2, 1) and (3, 2). Using the not-a-knot condition,
determine the four-by-four matrix equation for the b coefficients. Solve for the b’s as well
as the a’s, c’s and d’s, and thus find the cubic spline interpolant. Plot your result. You
may use Matlab to assist in your algebra.

Solutions to the Problems

Lecture 46 | Interpolation in
Matlab

View this lecture on YouTube

The Matlab function interp1.m performs interpolation of a tabulated function. It is
mainly called using yy=interp1(x, y, xx, method); where x and y are vectors con-
taining the tabulated x-y function values and xx is a vector on whose values you want the
function to be interpolated, with yy the returned interpolated values.

Several interpolation methods are possible, but the two we have discussed in this week
assign method the values 'linear' or 'spline', where cubic spline interpolation uses the
not-a-knot condition. There is also another Matlab function spline.m that can use other
conditions.

As an example, we show how to use interp1.m to interpolate the points on a sine
curve using either piece-wise linear or cubic spline interpolation.
x=0:pi/4:2*pi; y=sin(x);

plot(x,y,'ok'); hold on;

xx=linspace(0,2*pi,1000);

plot(xx,sin(xx),'k');

yy=interp1(x,y,xx,'linear');

plot(xx,yy,'b');

yy=interp1(x,y,xx,'spline');

plot(xx,yy, 'r');

0 1 2 3 4 5 6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

102

https://youtu.be/0JrYTW-N2BA

WEEK IV. QUADRATURE AND INTERPOLATION 103

Problems for Lecture 46

1. Load the following Matlab MAT-files:

data1.mat

data2.mat

The file data1.mat contains the variables x1 and y1. The file data2.mat contains the
variables x2 and y2. Use cubic spines to interpolate both y1 and y2 to a uniform x-grid.
Plot y=y1+y2 versus x. Your result should look like y = sin x.

Solutions to the Problems

Lecture 47 | Project IV: Bessel
functions and their
zeros

View this lecture on YouTube

The Bessel function of order n can be defined by the definite integral

Jn(x) =
1
π

∫ π

0
cos (x sin θ − nθ) dθ, for n = 0, 1, 2,

The zeros of the Bessel function play an important role in the solution of partial differential
equations in cylindrical coordinates. The goal of this project is to compute the first five
positive roots, jn,k (k = 1, 2, . . . , 5) of the first six Bessel functions Jn(x) (n = 0, 1, . . . , 5)
using quadrature and root-finding.

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
J

0
(x)

J
1
(x)

J
2
(x)

Before you start computing the roots, I would recommend plotting the Bessel functions
Jn(x) versus x as I have done above. From the plot, you can easily visualize the behavior
of the roots. To plot the Bessel functions, you can make use of the Matlab function
integrate.m.

To find the roots of the Bessel functions, you can also make use of the Matlab function
fzero.m. Initial guesses for the roots can be obtained from your Bessel function plots, or
from Wolfram MathWorld (input by hand initial guesses accurate to no more than one
decimal place). Generate your roots using two for loops, and output the roots in tabular
form similar to that of Wolfram MathWorld.

104

https://youtu.be/NoblEFn49sw
https://mathworld.wolfram.com/BesselFunctionZeros.html
https://mathworld.wolfram.com/BesselFunctionZeros.html

WEEK IV. QUADRATURE AND INTERPOLATION 105

Problems for Lecture 47

1. The Bessel function of order n, for n = 0, 1, 2, . . . , can be defined by the definite integral

Jn(x) =
1
π

∫ π

0
cos (x sin θ − nθ) dθ.

Compute the first five positive roots jn,k, (k = 1, 2, . . . , 5), of the first six Bessel functions
Jn(x), (n = 0, 1, . . . , 5).

Solutions to the Problems

Week V

Ordinary Differential Equations

In this week’s lectures, we learn about the numerical integration of odes. The most basic method
is called the Euler method, and it is a single-step, first-order method. The Runge-Kutta methods
extend the Euler method to multiple steps and higher order, with the advantage that larger time-
steps can be made. We show how to construct a family of second-order Runge-Kutta methods,
and introduce you to the widely-used fourth-order Runge-Kutta method. These methods are easily
adopted for solving systems of odes. We will show you how to use the Matlab function ode45,
and how to solve a two-point boundary value ode using the shooting method.

Your programming project will be to write a Matlab code to compute the numerical simulation of
the gravitational two-body problem.

106

Lecture 48 | Euler method
View this lecture on YouTube

The Euler method is the most straightforward method to integrate a differential equation.
The first-order differential equation ẋ = f (t, x), with initial condition x(t0) = x0, provides
the slope f (t0, x0) of the tangent line to the solution curve x = x(t) at the point (t0, x0).
With a small step size ∆t = t1 − t0, the initial condition (t0, x0) can be marched forward
to (t1, x1) along the tangent line (see figure) using x1 = x0 + ∆t f (t0, x0). The point (t1, x1)

then becomes the new initial condition and is marched forward to (t2, x2) along a newly
determined tangent line with slope given by f (t1, x1). This iterative method is usually
written as

xn+1 = xn + ∆t f (tn, xn).

For small enough ∆t, the numerical solution should converge to the exact solution of the
ode, when such a solution exists.

The Euler Method has a local error, that is, the error incurred over a single time step,
of O(∆t2). The global error, however, comes from integrating out to a time T. If this
integration takes N time steps, then the global error is the sum of N local errors. Since
N = T/∆t, the global error is given by O(∆t), and it is customary to call the Euler Method
a first-order method. We next consider some common second-order methods.

107

https://youtu.be/WMQ2Cac4sqw

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 108

Problems for Lecture 48

1. Let ẋ = b, with initial condition x(0) = x0 and b a constant. With t = n∆t, show that
the Euler method results in the exact solution

x(t) = x0 + bt.

Solutions to the Problems

Lecture 49 | Modified Euler
method

View this lecture on YouTube

The modified Euler method, also called Heun’s method or the predictor-corrector method,
is a second-order method. The idea is to average the value of ẋ at the beginning and end
of each time step. Hopefully, we could write

xn+1 = xn +
1
2

∆t
(

f (tn, xn) + f (tn + ∆t, xn+1)
)
.

The obvious problem with this formula is that the unknown value xn+1 appears on the
right-hand-side. We can, however, estimate this value, in what is called the predictor step.
For the predictor step, we use the Euler method to find

xp
n+1 = xn + ∆t f (tn, xn).

Then the corrector step becomes

xn+1 = xn +
1
2

∆t
(

f (tn, xn) + f (tn + ∆t, xp
n+1)

)
.

The Modified Euler method is usually coded as

k1 = ∆t f (tn, xn), k2 = ∆t f (tn + ∆t, xn + k1),

xn+1 = xn +
1
2
(k1 + k2).

The modified Euler method is one of a family of methods called second-order Runge-
Kutta methods, which we derive in the next lecture.

109

https://youtu.be/d3sZa3T2TJw

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 110

Problems for Lecture 49

1. Let ẋ = bt, with initial condition x(0) = x0 and b a constant. With t = n∆t, show that
the Modified Euler method results in the exact solution

x(t) = x0 +
1
2

bt2.

Solutions to the Problems

Lecture 50 | Runge-Kutta methods
View this lecture on YouTube

To illustrate the derivation of Runge-Kutta methods, we derive here the complete fam-
ily of second-order methods. We march the solution of ẋ = f (t, x) forward by writing

k1 = ∆t f (tn, xn), k2 = ∆t f (tn + α∆t, xn + βk1),

xn+1 = xn + ak1 + bk2,

where α, β, a and b are constants that define particular second-order methods. We will
constrain the values of these constants by computing the Taylor series of xn+1 in two ways.

First, we compute the Taylor series for xn+1 directly:

xn+1 = x(tn + ∆t) = x(tn) + ∆tẋ(tn) +
1
2
(∆t)2 ẍ(tn) + O(∆t3).

Now, ẋ(tn) = f (tn, xn). The second derivative is more tricky and requires partial deriva-
tives. We have

ẍ(tn) =
d
dt

f (t, x(t))
∣∣∣∣
t=tn

= ft(tn, xn) + ẋ(tn) fx(tn, xn) = ft(tn, xn) + f (tn, xn) fx(tn, xn).

Putting all the terms together, we obtain

xn+1 = xn + ∆t f (tn, xn) +
1
2
(∆t)2 (ft(tn, xn) + f (tn, xn) fx(tn, xn)

)
+ O(∆t3). (50.1)

Second, we compute the Taylor series for xn+1 from the Runge-Kutta formula. We start
with

xn+1 = xn + a∆t f (tn, xn) + b∆t f
(
tn + α∆t, xn + β∆t f (tn, xn)

)
+ O(∆t3);

and the Taylor series that we need is

f
(
tn + α∆t, xn + β∆t f (tn, xn)

)
= f (tn, xn)+ α∆t ft(tn, xn)+ β∆t f (tn, xn) fx(tn, xn)+O(∆t2).

The Taylor-series for xn+1 from the Runge-Kutta method is therefore given by

xn+1 = xn + (a + b)∆t f (tn, xn) + (∆t)2(αb ft(tn, xn) + βb f (tn, xn) fx(tn, xn)
)
+ O(∆t3).

(50.2)
Comparing (50.1) and (50.2), we find three constraints for the four constants:

a + b = 1, αb = 1/2, βb = 1/2.

111

https://youtu.be/C4UymmEi3Kw

Lecture 51 | Second-order
Runge-Kutta methods

View this lecture on YouTube

The family of second-order Runge-Kutta methods that solve ẋ = f (t, x) is given by

k1 = ∆t f (tn, xn), k2 = ∆t f (tn + α∆t, xn + βk1),

xn+1 = xn + ak1 + bk2,

where we have derived three constraints for the four constants α, β, a and b:

a + b = 1, αb = 1/2, βb = 1/2.

The modified Euler method corresponds to α = β = 1 and a = b = 1/2. The function
f (t, x) is evaluated at the times t = tn and t = tn + ∆t, and we have

k1 = ∆t f (tn, xn), k2 = ∆t f (tn + ∆t, xn + k1),

xn+1 = xn +
1
2
(k1 + k2).

The midpoint method corresponds to α = β = 1/2, a = 0 and b = 1. In this method, the
function f (t, x) is evaluated at the times t = tn and t = tn + ∆t/2 and we have

k1 = ∆t f (tn, xn), k2 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k1

)
,

xn+1 = xn + k2.

112

https://youtu.be/wIiCaSzMJFw

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 113

Problems for Lecture 51

1. Construct Ralston’s method, which is a second-order Runge-Kutta method correspond-
ing to α = β = 3/4, a = 1/3 and b = 2/3.

2. Consider the ode given by
dy
dx

= f (x),

with y(0) as the initial value. Use the second-order Runge-Kutta methods given by the
midpoint rule and the modified Euler method to derive two elementary quadrature for-
mulas.

Solutions to the Problems

Lecture 52 | Higher-order
Runge-Kutta methods

View this lecture on YouTube

Higher-order Runge-Kutta methods can also be derived, but require substantially more
algebra. For example, the general form of the third-order method is given by

k1 = ∆t f (tn, xn), k2 = ∆t f (tn + α∆t, xn + βk1), k3 = ∆t f (tn + γ∆t, xn + δk1 + εk2),

xn+1 = xn + ak1 + bk2 + ck3,

with constraints on the constants α, β, γ, δ, ε, a, b and c. The fourth-order method has
stages k1, k2, k3 and k4. The fifth-order method requires at least six stages. The table
below gives the order of the method and the minimum number of stages required.

order 2 3 4 5 6 7 8

minimum # stages 2 3 4 6 7 9 11

Because the fifth-order method requires two more stages than the fourth-order method,
the fourth-order method has found some popularity. The general fourth-order method
with four stages has 13 constants and 11 constraints. A particularly simple fourth-order
method that has been widely used in the past by physicists is given by

k1 = ∆t f (tn, xn), k2 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k1

)
,

k3 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k2

)
, k4 = ∆t f (tn + ∆t, xn + k3) ;

xn+1 = xn +
1
6
(k1 + 2k2 + 2k3 + k4) .

114

https://youtu.be/40NvJNrmHhw

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 115

Problems for Lecture 52

1. Consider the ode given by
dy
dx

= f (x),

with y(0) as the initial value. Use the standard fourth-order Runge-Kutta method to
derive Simpson’s rule.

Solutions to the Problems

Lecture 53 | Higher-order odes
and systems

View this lecture on YouTube

Our numerical methods can be easily adapted to solve higher-order odes, which are
equivalent to a system of first-order odes. As an example, consider the second-order
ode given by

ẍ = f (t, x, ẋ).

This second-order ode can be rewritten as a system of two first-order odes by defining
u = ẋ. We then obtain

ẋ = u, u̇ = f (t, x, u).

This trick also works for higher-order odes. For example, the third-order ode,

...
x = f (t, x, ẋ, ẍ),

becomes
ẋ = u, u̇ = v, v̇ = f (t, x, u, v).

We can easily generalize the Runge-Kutta method to solve a system of first-order odes.
As an example, we solve the following system of two first-order odes,

ẋ = f (t, x, y), ẏ = g(t, x, y).

The generalization of the modified Euler method, say, would be

k1 = ∆t f (tn, xn, yn), l1 = ∆tg(tn, xn, yn),

k2 = ∆t f (tn + ∆t, xn + k1, yn + l1), l2 = ∆tg(tn + ∆t, xn + k1, yn + l1);

xn+1 = xn +
1
2
(k1 + k2) , yn+1 = yn +

1
2
(l1 + l2) ,

where each stage requires computation of both a k and a l.

116

https://youtu.be/wu1sS1g5ivs

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 117

Problems for Lecture 53

1. Write down the modified Euler method for the system of equations given by

ẋ = f (t, x, y, z), ẏ = g(t, x, y, z), ż = h(t, x, y, z).

Solutions to the Problems

Lecture 54 | Adaptive Runge-Kutta
methods

View this lecture on YouTube

An adaptive ode solver automatically finds the best integration step-size ∆t at each time
step. The Dormand-Prince method, which is implemented in Matlab’s most widely used
solver, ode45.m, determines the step size by comparing the results of fourth- and fifth-
order Runge-Kutta methods. This solver requires six function evaluations per time step,
and saves computational time by constructing both fourth- and fifth-order methods using
the same function evaluations.

Suppose the fifth-order method finds xn+1 with local error O(∆t6), and the fourth-
order method finds Xn+1 with local error O(∆t5). Let ε be the requested error tolerance,
and let e be the actual error. We can estimate e from the difference between the fifth- and
fourth-order methods; that is,

e = |xn+1 − Xn+1|.

Now, we know that e is of O(∆t5). Let ∆τ be the estimated step size required for the
requested error ε. Then, by the scaling of the errors, we have

e/ε = (∆t)5/(∆τ)5,

or solving for ∆τ,

∆τ = ∆t
(ε

e

)1/5
.

On the one hand, if the actual error is greater than the desired error, e > ε, then we reject
the integration step and redo the time step using the smaller value ∆τ. On the other hand,
if the actual error is less that the requested error, e < ε, then we accept xn+1 and increase
the next time step to the larger value ∆τ. In practice, one usually includes a safety factor
when computing ∆τ, i.e.,

∆τ = S∆t
(ε

e

)1/5
,

with S = 0.9, say, to prevent the wastefulness of too many failed time steps.

118

https://youtu.be/6bCBXvsD7gw

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 119

Problems for Lecture 54

1. Using the Dormand-Prince method, suppose that a user requests an error tolerance
of ε = 10−6, and suppose the time step attempted was ∆t = 0.01 and that e = |xn+1 −
Xn+1| = 1.1× 10−6. Is the current time step accepted? What time step will be used next?
Assume a safety factor of 0.9.

Solutions to the Problems

Lecture 55 | Integrating odes in
Matlab (Part A)

View this lecture on YouTube

The general purpose Matlab ode solver is ode45, and we discuss how to use it here.
A single first-order ode is easily integrated using a technique similar to what we have
already learned for both root finding and quadrature. For example, to numerically solve
the logistic equation ẋ = rx(1− x) and plot x versus t, we can code

dxdt = @(x,r) r*x*(1-x);

r=1; x0=0.01; tspan=[0 10];

[t,x] = ode45(@(t,x) dxdt(x,r), tspan, x0);

plot(t,x);

The right-hand side of the ode is defined as the function handle dxdt and this is passed
as the first argument to ode45. Here, the right-hand side of the ode depends on x and
a single parameter r, but in general, it can also depend on t and have any number of
parameters. The integrator ode45, however, expects a function that has the independent
variable as the first argument, and the dependent variables (written as a vector) as the
second argument. To satisfy this requirement, we give ode45 the handle to an anonymous
function, so that its first argument looks like @(t,x) dxdt(x,r). For another example, if
the right-hand side of the ode also depends on t and another parameter s, we may give as
the first argument to ode45 the expression @(t,x) dxdt(t,x,r,s).

For a more complicated system of odes, it may be more convenient to define a sub-

function. For example, to solve the Lotka-Volterra equations, ẋ = rx(1− y), ẏ =
1
r

y(x− 1)
and plot x and y versus t as well as y versus x, we can code

r=1; x0=1.1; y0=1; tspan=[0 6*pi];

[t,xy]=ode45(@(t,xy) lv(xy,r),tspan,[x0 y0]);

figure(1); plot(t,xy); xlabel('t'); ylabel('x, y');

figure(2); plot(xy(:,1),xy(:,2)); xlabel('x'); ylabel('y');

function dxydt = lv(xy,r)

x=xy(1); y=xy(2);

dxydt=[r*x*(1-y); (1/r)*y*(x-1)];

end

Some comments on the syntax. First, the independent variable t is returned as a column
vector and the dependent variables x,y are returned as the two columns of a matrix.
Second, the function ode45.m knows we are solving a system of two first-order odes
because we give it a two-component initial condition. Third, the right-hand sides of the
differential equations dxydt must be written as a column vector. If they are written as a
row vector, you will get an error message.

120

https://youtu.be/uyXXWxx_zIo

Lecture 56 | Integrating odes in
Matlab (Part B)

View this lecture on YouTube

The graphs output by Matlab from the Lotka-Volterra code are shown below:

0 5 10 15
0.9

0.95

1

1.05

1.1

0.9 0.95 1 1.05 1.1
0.9

0.95

1

1.05

1.1

A careful inspection of the figures reveals two anomalies. First, in the plot of x and y
versus t, there are not enough data points in the output for a smooth plot, particularly
at the maxima and minima of the functions where the linear interpolation of the data is
evident. Second, in the phase-space plot of y versus x, it is unclear whether the solution
is exactly periodic since overlapping curves are evident.

We can modify our call to ode45 to improve these plots. The integrator ode45 can do
its own interpolation at little expense if you define tspan to have more than two elements.
For example, we can replace tspan=[0 6*pi] by the code tspan=linspace(0,6*pi,1000).

After rerunning the code, you will observe that although the plot of x and y versus t
is now smooth, the plot of y versus x still shows overlapping curves. The problem here
is with the default error tolerance. There are two tolerances that are set: RelTol and
AbsTol. Roughly speaking, RelTol sets the number of significant digits in the computed
solution, and AbsTol sets the error tolerance as the solution approaches zero. The default
values of these two tolerances are RelTol = 1.e-3, corresponding to approximately three
significant digits, and AbsTol=1.e-6. Here, the phase-space plot may be improved by de-
creasng RelTol. The appropriate change to the Matlab program is done in the following
two lines of code:

options = odeset('RelTol',1.e-4);

[t,xy]=ode45(@(t,xy) lv(xy,r),tspan,[x0; y0],options);

The improved plots are shown on the next page. This code runs fast, but it should be
noted that for more computationally intensive calculations, smaller values for the error
tolerances will result in longer computational times.

121

https://youtu.be/YdhN_gGuPiA

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 122

0 5 10 15
0.9

0.95

1

1.05

1.1

0.9 0.95 1 1.05 1.1
0.9

0.95

1

1.05

1.1

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 123

Problems for Lecture 56

1. The Lorenz equations are a system of nonlinear odes that pioneered the study of chaos.
The Lorenz equations are given by

ẋ = σ(y− x), ẏ = x(r− z)− y, ż = xy− βz,

where σ, β and r are constants. Edward Lorenz studied the solution for σ = 10, β = 8/3
and r = 28, and the result is now known as the Lorenz attractor, an example of what
is now more generally known as a strange attractor. Compute the Lorenz attractor and
plot z versus x and y. Use the Matlab function plot3.m. Remove the transient before
plotting.

Solutions to the Problems

Lecture 57 | Shooting method for
boundary value
problems

View this lecture on YouTube

We consider the general second-order ode of the form

d2y
dx2 = f (x, y, dy/dx),

with the two-point boundary values y(x0) = y0 and y(x f) = y f . To develop a solution
method, we first formulate the second-order ode as a system of two first-order odes. We
have

dy
dx

= z,
dz
dx

= f (x, y, z).

One initial condition is known, y(x0) = y0, but the second initial condition for z(x0) is
unknown. The aim of the shooting method is to determine the value of z(x0) that results
in y(x f) = y f .

This is a root-finding problem. Let the variable ξ denote the unknown value z(x0). We
define F = F(ξ) as

F(ξ) = y(x f)− y f ,

where y(x f) is the value obtained by integrating the differential equations to x = x f using
the initial conditions y(x0) = y0 and z(x0) = ξ. The solution to F(ξ) = 0 determines
the value of ξ = z(x0) that solves the two-point boundary value problem. This method
is called shooting because the slope of the function y = y(x) at x = x0 plays the role of
aiming the gun, with the intention to hit the target at y(x f) = y f .

To determine the value of ξ that solves F(ξ) = 0, we can make use of the Matlab

function fzero, together with the differential equation solver ode45.

124

https://youtu.be/qIfxydBEdzg

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 125

Problems for Lecture 57

1. The dimensionless, unforced pendulum equation is given by

θ̈ + αθ̇ + sin θ = 0,

where α is the only free parameter.
Consider initial conditions with the mass at the bottom, θ(0) = 0. Using the shooting

method, determine the smallest positive value of θ̇(0) such that the mass becomes exactly
balanced at the top (θ = π). Plot this value of θ̇(0) versus α for 0 ≤ α ≤ 2.

Solutions to the Problems

Lecture 58 | Project V: Two-body
problem (Part A)

View this lecture on YouTube

Consider two masses m1 and m2 with position vectors r1 and r2. Newton’s second law
and the universal law of gravitation yields for the governing equations

m1 r̈1 = F, m2 r̈2 = −F, where F = −Gm1m2
r1 − r2

|r1 − r2|3
,

where G is the gravitational constant. The two-body problem can be reduced to a one-
body problem by a change of coordinates. Let r be the relative position vector and R be
the coordinate of the center of mass; that is,

r = r1 − r2, R =
m1r1 + m2r2

m1 + m2
.

Solving for r1 and r2 in terms of r and R gives

r1 = R +
m2r

m1 + m2
, r2 = R− m1r

m1 + m2
.

Now, changing coordinates in Newton’s equations from r1 and r2 to r and R results in

m1R̈ +
m1m2 r̈

m1 + m2
= F, m2R̈− m1m2 r̈

m1 + m2
= −F;

and adding and subtracting these two equations yields the result

R̈ = 0, µr̈ = F,

where µ is called the reduced mass and is given by

µ =
m1m2

m1 + m2
.

The center-of-mass coordinate system is an inertial coordinate system (one moving at
constant velocity) with the center of mass fixed at the origin (R = 0). The remaining
equation for the relative coordinate has the form of a one-body problem, and can be
written as

r̈ = −k
r
r3 , where k = G(m1 + m2).

Once r is determined, the coordinates of the two masses in the center of mass coordinate
system can be found from

r1 =

(
m2

m1 + m2

)
r, r2 = −

(
m1

m1 + m2

)
r.

126

https://youtu.be/lDKnPVCVzSQ

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 127

Problems for Lecture 58

1. Consider the two-body problem where the solution for the relative coordinates is a
circular orbit of unit radius, that is,

r = cos (ωt)i + sin (ωt)j.

Sketch the orbits of m1 and m2 for (a) m1 = m2 and (b) m1 = 3m2.

Solutions to the Problems

Lecture 59 | Project V: Two-body
problem (Part B)

View this lecture on YouTube

The equivalent one-body problem can be simplified further. The position vector r and
the velocity vector ṙ form a plane, and since the acceleration vector points in the direc-
tion of the position vector, the one body motion will be restricted to this plane. We can
place our coordinate system so that r lies in the x-y plane with z = 0, and we can write
r = xi + yj.

The relevant units are length and time, and they may be nondimensionalized using
the constant parameter k (which has units l3/t2) and the distance of closest approach of
the two masses (the minimum value of r). The dimensionless governing equations, in
component form, are then given by

ẍ = − x
(x2 + y2)3/2 , ÿ = − y

(x2 + y2)3/2 .

We can further orient the x-y axes so that the solution r = r(t) is symmetric about the
x-axis, and the minimum value of r occurs at x = −1 and y = 0, where symmetry also
requires ẋ = 0. Setting our initial conditions at the point of minimum r, we can write

x(0) = −1, y(0) = 0, ẋ(0) = 0, ẏ(0) =
√

1 + e,

where we have parameterized ẏ(0) using e. The parameter e is called the eccentricity of
the orbit, and some further analysis can show that closed elliptical orbits correspond to
0 < e < 1 and open hyperbolic orbits correspond to e > 1. The orbit with e = 0 is circular
and the orbit with e = 1 is parabolic. Furthermore, the period of a closed orbit is given by
T = 2π/(1− e)3/2.

For this project, you will write a code which solves the two-body problem. Given the
initial conditions with specified value of e, the solution for r = r(t) for several periods of
an orbit can be computed using the Matlab function ode45.m by solving a system of four
first-order differential equations. The motion of the corresponding two masses can then
be simulated after specifying the ratio of the masses.

128

https://youtu.be/1i4dE3cp_44

WEEK V. ORDINARY DIFFERENTIAL EQUATIONS 129

Problems for Lecture 59

1. By solving a system of differential equations, determine the orbit of two masses using
Newton’s law and the universal law of gravitation. Display an animation of the orbit.

Solutions to the Problems

Week VI

Partial Differential Equations

In this week’s lectures, we learn how to find numerical solutions of some partial differential equa-
tions. This is a vast topic, and research areas such as computational fluid dynamics have many
specialized solution methods.

Here, we only provide a taste of this subject. We divide the numerical solutions of pdes into bound-
ary value problems and initial value problems, and apply the finite difference method of solution.
We first show how to solve the Laplace equation, a boundary value problem. Two methods are
illustrated: a direct method where the solution is found by Gaussian elimination; and an iterative
method, where the solution is approached asymptotically. Second, we show how to solve the one-
dimensional diffusion equation, an initial value problem. The Crank-Nicolson method of solution is
derived. We also show how to apply the Von Neumann stability analysis to determine the stability
of our time-integration schemes.

Your programming project will be to write a Matlab code that computes the solution of the two-
dimensional diffusion equation using the Crank-Nicolson method.

130

Lecture 60 | Boundary and initial
value problems

View this lecture on YouTube

A pde for which a numerical solution is sought most generally divides into two fun-
damental types. For a boundary value problem, the function or its derivatives are known
on the boundary of a domain, and we want to solve for the function inside the domain.
Usually, the solution is in some type of equilibrium or steady state. For an initial value
problem, the function is known at t = 0 throughout its spatial domain, and we want to
know how the function evolves in time. Sometimes, it is possible to obtain the solution of
a boundary value problem by evolving an initial value problem to a steady state. But it is
often faster to solve the boundary value problem directly.

Schematics for a two-dimensional boundary value problem and one-dimensional ini-
tial value problem are shown below:

The black and red circles represent given boundary and initial values, respectively. The
open circles represent the unknown solution.

131

https://youtu.be/tMO28AakkZ8

Practice Quiz | Classify partial
differential
equations

Classify the following pde problems:

1. The steady flow of a fluid past an infinite cylinder.

a) Boundary value problem

b) Initial value problem

2. The turbulent flow of a fluid past an infinite cylinder.

a) Boundary value problem

b) Initial value problem

3. The steady-state salt concentration in a reservoir.

a) Boundary value problem

b) Initial value problem

4. The transient salt concentration in a reservoir after a heavy rain.

a) Boundary value problem

b) Initial value problem

5. The electrostatic potential surrounding two conductors held at constant potential.

a) Boundary value problem

b) Initial value problem

6. The transitory electrostatic potential when a conductor is moved.

a) Boundary value problem

b) Initial value problem

Solutions to the Practice quiz

132

Lecture 61 | Central difference
approximation

View this lecture on YouTube

Finite difference methods are often used to solve pdes, and we need first to derive fi-
nite difference formulas for derivatives. To determine a formula for the derivative of a
function y = y(x), consider the Taylor series for y(x + h) and y(x− h) about x:

y(x + h) = y(x) + hy′(x) +
1
2

h2y′′(x) +
1
6

h3y′′′(x) +
1

24
h4y′′′′(x) + . . . ,

y(x− h) = y(x)− hy′(x) +
1
2

h2y′′(x)− 1
6

h3y′′′(x) +
1

24
h4y′′′′(x) +

The standard definitions of the derivatives give the first-order approximations,

y′(x) =
y(x + h)− y(x)

h
+ O(h), y′(x) =

y(x)− y(x− h)
h

+ O(h),

where here we use the big-Oh notation, as in O(hp), to denote omitted terms that go to
zero no slower than hp as h goes to zero.

The more widely-used second-order approximation for the first derivative is called the
central-difference approximation and is given by

y′(x) =
y(x + h)− y(x− h)

2h
+ O(h2).

The second-order approximation for the second derivative is also a central-difference ap-
proximation and can be found from considering

y(x + h) + y(x− h) = 2y(x) + h2y′′(x) +
1
12

h4y′′′′(x) + . . . ,

from which we obtain

y′′(x) =
y(x + h)− 2y(x) + y(x− h)

h2 + O(h2).

133

https://youtu.be/Tfo12ylAMso

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 134

Problems for Lecture 61

1. Using Taylor series approximations for y(x + 2h), y(x + h), y(x − h) and y(x − 2h),
derive a central difference approximation for the first derivative y′(x) that is accurate to
O(h4).

Solutions to the Problems

Lecture 62 | Discrete Laplace
equation

View this lecture on YouTube

As an example of a boundary value problem and the finite difference method, we dis-
cretize the two-dimensional Laplace equation,(

∂2

∂x2 +
∂2

∂y2

)
Φ = 0,

on the rectangular domain [0, Lx]× [0, Ly]. We form a two-dimensional grid with Nx and
Ny intervals in the x- and y-direction, respectively, and nx = Nx + 1 and ny = Ny + 1 grid
points. With grid spacing ∆x = Lx/Nx and ∆y = Ly/Ny, the x and y coordinates of the
grid points are given by

xi = (i− 1)∆x, i = 1, 2, . . . , nx; yj = (j− 1)∆y, j = 1, 2, . . . , ny.

Furthermore, we denote the value of Φ(xi, yj) by Φi,j. The central difference approxima-
tions for the second derivatives at the point (xi, yj) are given by

∂2Φ
∂x2 ≈

1
(∆x)2

(
Φi+1,j − 2Φi,j + Φi−1,j

)
,

∂2Φ
∂y2 ≈

1
(∆y)2

(
Φi,j+1 − 2Φi,j + Φi,j−1

)
.

We consider here only square grids with ∆x = ∆y. Combining the formulas for the second
derivatives and rearranging terms results in the discrete Laplace equation given by

4Φi,j −Φi+1,j −Φi−1,j −Φi,j+1 −Φi,j−1 = 0.

The five terms in this equation are shown
in the figure on the right, where the red col-
ored point is the central position at which
the derivatives have been computed. A di-
rect solution of the Laplace equation writes
this difference equation in matrix form, with
boundary conditions incorporated into the
equations, and solves using Gaussian elim-
ination.

135

https://youtu.be/5-QAgZ81gg0

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 136

Problems for Lecture 62

1. Show that the solution of the discrete Laplace equation at grid point (i, j) on a uniform
grid is just the average value of the solution at the neighboring four grid points.

Solutions to the Problems

Lecture 63 | Natural ordering
View this lecture on YouTube

To convert the discrete Laplace equation into matrix form, we will need to place the
function values Φi,j into a column vector. The commonly used ordering, called natural
ordering, starts at the bottom left of the grid and moves left-to right along rows. This
results in the column vector

Φ = [Φ1,1, Φ2,1, . . . , Φnx ,1, Φ1,2, Φ2,2, . . . , Φnx ,2 . . . , Φnx ,ny]
T ,

which has a total of nxny components. The double index then maps into a single index,
with mapping (i, j) → k = i + (j − 1)nx, and the discrete Laplace equation transforms
from

4Φi,j −Φi+1,j −Φi−1,j −Φi,j+1 −Φi,j−1 = 0

to

4Φk −Φk+1 −Φk−1 −Φk+nx −Φk−nx = 0.

This equation is valid when k labels an interior point.
Boundary values for Φ need to satisfy prescribed boundary conditions. Here, we

consider Dirichlet boundary conditions, where the values of Φ itself are specified on the
boundaries of the domain. The coordinates (i, j) on the boundaries are Bottom (B): j = 1;
Left (L): i = 1; Top (T): j = ny; and Right (R): i = nx; and the ranges of the k indices (using
the Matlab colon operator), are given by

(B) 1 : nx; (L) 1 : nx : 1 + (ny − 1)nx;

(T) 1 + (ny − 1)nx : nxny; (R) nx : nx : nxny.

In the next lecture, we learn how to construct the matrix equation for Φ.

137

https://youtu.be/0Wq2U_6ibSw

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 138

Problems for Lecture 63

1. What are the k coordinates for the four corners of a rectangular box with nx and ny

grid points in the x- and y-directions, respectively?

Solutions to the Problems

Lecture 64 | Matrix formulation
View this lecture on YouTube

To solve the discrete Laplace equation, given by

4Φk −Φk+1 −Φk−1 −Φk+nx −Φk−nx = 0,

with Φk specified on the boundaries, we must first write it as a matrix equation AΦ = b,
with A an nxny-by-nxny square matrix.

When k indexes an internal grid point, the discrete Laplace equation goes into row k
of matrix A with a zero in row k of vector b. When k indexes a boundary point, row k of
matrix A will be row k of the identity matrix, and the known value of Φk will go into row
k of b. These boundary rows, then, serve the purpose of assigning the known boundary
values to Φ.

For illustration, we construct the matrix equation for a
three-by-three grid, shown at right, where the k indexing is
labeled. Here we see that there is only one internal grid point
(red) and eight boundary points (yellow), though usually there
are many more internal points than boundary points. The dis-
crete Laplace equation is only used in row five of the matrix,
and the other rows are given by the corresponding rows of the
identity matrix. When k indexes a boundary point, we assume
that Φk = bk is known.

1 2 3

4 5 6

7 8 9

The matrix equation is given by

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

=

b1

b2

b3

b4

0
b6

b7

b8

b9

In general, the nxny-by-nxny matrix A can be constructed using the Matlab function
spdiags, suitable for a sparse banded matrix. First A is constructed with five diagonals
corresponding to the five terms in the discrete Laplace equation, and then the rows corre-
sponding to boundary points can be replaced by the corresponding rows of the identity
matrix. The right-hand side b has zeros in rows corresponding to interior points, and the
boundary values of Φ in rows corresponding to boundary points.

We will discuss the Matlab code that solves the Laplace equation in the next Lecture.

139

https://youtu.be/NcVifhGXwrs

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 140

Problems for Lecture 64

1. Construct the matrix equation for the discrete Laplace equation on a four-by-four grid.
When k indexes a boundary point, assume that Φk = bk is known.

2. On a rectangular grid with nx and ny grid points, how many interior points are there
and how many boundary points? What percentage of grid points are boundary points
when nx = ny = 100, and what percentage when nx = ny = 1000?

Solutions to the Problems

Lecture 65 | Matlab solution of the
Laplace equation
(direct method)

View this lecture on YouTube
We solve the Laplace equation in a rectangle with side lengths Lx and Ly. The resolution is
set by the parameters Nx and Ny with nx=Nx+1 and ny=Ny+1 grid points in each direction.
The accuracy of the solution is improved by increasing the values of Nx and Ny. The
beginning of the code defines the rectangle and the grid:

Lx=1; Ly=1; %rectangle dimensions

Nx=100; Ny=100; %number of intervals in x,y directions

nx=Nx+1; ny=Ny+1; %number of gridpoints in x,y directions

dx=Lx/Nx; dy=Ly/Ny; %grid length in x,y directions

x=(0:Nx)*dx; y=(0:Ny)*dy; %x,y values on the grid

Next, the A matrix is constructed. The k indices of the boundary points are defined in the
vector boundary_index, the five diagonals are placed in the A matrix using the Matlab

spdiags function, and the rows associated with the boundary points are replaced by the
corresponding rows of the identity matrix using speye:

boundary_index=[1:nx, 1:nx:1+(ny-1)*nx, 1+(ny-1)*nx:nx*ny, nx:nx:nx*ny];

diagonals = [4*ones(nx*ny,1), -ones(nx*ny,4)];

A=spdiags(diagonals,[0 -1 1 -nx nx], nx*ny, nx*ny);

I=speye(nx*ny);

A(boundary_index,:)=I(boundary_index,:);

We next construct the right-hand side of the matrix equation. We use the boundary
conditions Φ = 0 on the bottom, left and right sides of the square, and Φ = 4x(1− x)
at the top. Since 0 ≤ x ≤ 1, Φ will equal zero on the corners and one at the midpoint
of the top. The simplest and clearest way to construct b is to first use (i, j) indexing and
then turn b into a column vector using the Matlab reshape function (or, more simply,
the colon operator):

b=zeros(nx,ny); %interior rows are zero

b(:,1)=0; %bottom

b(1,:)=0; %left

b(:,ny)=4*x.*(1-x); %top

b(nx,:)=0; %right

b=reshape(b,nx*ny,1); %make column vector using natural ordering [same as b=b(:)]

We solve for Φ and return to (i, j) indexing using reshape:

Phi=A\b; %solution by Gaussian elimination

Phi=reshape(Phi,nx,ny); %back to (i,j) indexing

Finally, we plot the solution. We use the Matlab meshgrid to set up the grid points, and
choose the contour levels we want to plot in the vector v. The contour plot is made using
the Matlab function contour. We use axis equal so that the graph has the same aspect
ratio as the problem domain.

141

https://youtu.be/kl3c7XGRN9g

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 142

To understand the required data structures of Phi, meshgrid and contour, suppose
that the x-y grid is defined by x=[x1 x2 x3] and y=[y1 y2 y3]. Then
[X, Y]=meshgrid(x,y) results in the matrices

X =

x1 x2 x3

x1 x2 x3

x1 x2 x3

 , Y =

y1 y1 y1

y2 y2 y2

y3 y3 y3

 ,

which are used to specify every point on the grid. The (i, j) data structure for Φ, where
the first index gives the x-location and the second index gives the y-location, is given by

Phi =

Phi11 Phi12 Phi13

Phi21 Phi22 Phi23

Phi31 Phi32 Phi33

 .

So when calling contour, to match the values of Phi with the locations in the X, Y grid,
we need to use the transpose, that is,

Phi' =

Phi11 Phi21 Phi31

Phi12 Phi22 Phi32

Phi13 Phi23 Phi33

 .

The code which plots the contours is then written as

[X,Y]=meshgrid(x,y);

v=[0.8 0.6 0.4 0.2 0.1 0.05 0.01]; %contour levels

contour(X,Y,Phi',v,'ShowText','on'); %requires transpose

axis equal;

set(gca,'YTick',[0 0.2 0.4 0.6 0.8 1]);

set(gca,'XTick',[0 0.2 0.4 0.6 0.8 1]);

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('y','Interpreter','latex','FontSize',14);

title('Solution of the Laplace equation','Interpreter','latex','FontSize',16);

The resulting plot looks like this:

0.01

0.01
0.01

0.
01

0.
01

0.05

0.05

0.
05

0.
05

0.1

0.1
0.1

0.
1

0.2

0.2

0.
2

0.4

0.
40.6

0.60.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 143

Problems for Lecture 65

1. Using the direct method, solve the Laplace equation inside a unit square. Set the
boundary conditions to be zero on the left and bottom sides, and to go from zero to
one across the top, and from one to zero down the right side. Model these boundary
conditions as

Φ = x(2− x) for y = 1; Φ = y(2− y) for x = 1.

Solutions to the Problems

Lecture 66 | Jacobi, Gauss-Seidel
and SOR methods

View this lecture on YouTube

Iterative methods are often used for solving systems of equations arising from pdes. Here,
we explain the related iterative methods that go by the names of Jacobi, Gauss-Seidel, and
Successive Over Relaxation (SOR) methods.

For illustration, we consider again the discrete Laplace equation given by

4Φi,j −Φi+1,j −Φi−1,j −Φi,j+1 −Φi,j−1 = 0.

The Jacobi method simply solves this equation iteratively for Φi,j. Adding superscripts to
denote the iteration step, we iterate the following equation until convergence:

Φ(n+1)
i,j =

1
4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1

)
.

Historically, the FORTRAN language required two different arrays to implement the Ja-
cobi method: the first to store the current solution and the second to store the updated
solution. When only one array was used, Φi−1,j and Φi,j−1 were updated before Φi,j and
the method was instead called Gauss-Seidel. Mathematically, it looked like

Φ(n+1)
i,j =

1
4

(
Φ(n)

i+1,j + Φ(n+1)
i−1,j + Φ(n)

i,j+1 + Φ(n+1)
i,j−1

)
.

The SOR method first rewrites the Jacobi (or Gauss-Seidel) method by adding and sub-
tracting Φ(n)

i,j on the right-hand side to obtain

Φ(n+1)
i,j = Φ(n)

i,j +
1
4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1 − 4Φ(n)

i,j

)
.

In this form, we see that the Jacobi method updates the value of Φi,j at each iteration. We
can either magnify or diminish this update by multiplying the correction by λ. After a bit
of algebra, we find

Φ(n+1)
i,j = (1− λ)Φ(n)

i,j +
λ

4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1

)
.

When 1 < λ < 2, the method is called Successive Over Relaxation, or SOR, and convergence
may be accelerated. For some nonlinear equations, however, it may be necessary to choose
0 < λ < 1 for stability reasons, and perhaps a better name for the method would be
Successive Under Relaxation. When under relaxing, the convergence of the iteration will be
slowed, but that is the price that sometimes must be paid.

144

https://youtu.be/QpzOttega9s

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 145

Problems for Lecture 66

1. The Jacobi, Gauss-Seidel and SOR methods can also be used to solve a system of linear
equations. Consider the system of equations given by

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3.

By solving the ith equation for xi, write down the Jacobi iteration method for this system.

Solutions to the Problems

Lecture 67 | Red-black ordering
View this lecture on YouTube

A final variant of the classical iteration methods uses red-black ordering of the grid points.
In this algorithm, the grid is viewed as a checkerboard with alternating red and black grid
points, as shown below.

An updating of Φi,j is done in two passes: in the first pass, Φi,j is updated only at the red
grid points; in the second pass, only on the black grid points. Because of the structure of
the discrete Laplace equation, the updated values of Φ on the red squares depend only on
the values of Φ on the black squares, and the updated values of Φ on the black squares
depend only on the values of Φ on the red squares. All updating terms, then, are at the
same level of iteration. This could result in faster and more stable convergence, or may be
useful when implementing parallel programming algorithms.

146

https://youtu.be/giTZ89q-Bpk

Lecture 68 | Matlab solution of the
Laplace equation
(iterative method)

View this lecture on YouTube

The code begins in the same way as the direct method:

Lx=1; Ly=1; %rectangle dimensions

Nx=100; Ny=100; %number of intervals in x,y directions

nx=Nx+1; ny=Ny+1; %number of gridpoints in x,y directions

dx=Lx/Nx; dy=Ly/Ny; %grid length in x,y directions

x=(0:Nx)*dx; y=(0:Ny)*dy; %x,y values on the grid

Next, some additional parameters and index vectors are defined:

eps=1.e-6; %convergence criteria for each value of Phi

index_x=2:nx-1; index_y=2:ny-1; %internal grid points

The solution matrix Φ is initialized with zero at all internal grid points, and with the
boundary values fixed:

Phi=zeros(nx,ny);%matrix with solution and boundary conditions

Phi(:,1)=0; Phi(1,:)=0; Phi(:,ny)=4*x.*(1-x); Phi(nx,:)=0; %boundary grid points BLTR

We now iterate the Jacobi method until each internal value of Φ changes less than eps

with each iteration.

Phi_old=Phi;

error=2*eps; ncount=0;

while (error > eps)

ncount=ncount+1;

Phi(index_x,index_y)=0.25*(Phi(index_x+1,index_y) ...

+Phi(index_x-1,index_y)+Phi(index_x,index_y+1)+Phi(index_x,index_y-1));

error=max(abs(Phi(:)-Phi_old(:)));

Phi_old=Phi;

end

Finally, we plot the solution as we did for the direct method.

[X,Y]=meshgrid(x,y);

v=[0.8 0.6 0.4 0.2 0.1 0.05 0.01];

[C,h]=contour(X,Y,Phi',v); clabel(C,h);

axis equal;

set(gca, 'YTick', [0 0.2 0.4 0.6 0.8 1]);

set(gca, 'XTick', [0 0.2 0.4 0.6 0.8 1]);

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('y','Interpreter','latex','FontSize',14);

title('Solution of the Laplace equation','Interpreter','latex','FontSize',16);

147

https://youtu.be/vz-enxt57yY

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 148

Problems for Lecture 68

1. Using the Jacobi method, solve the Laplace equation inside a unit square. Set the
boundary conditions to be zero on the left and bottom sides, and to go from zero to
one across the top, and from one to zero down the right side. Model these boundary
conditions as

Φ = x(2− x) for y = 1; Φ = y(2− y) for x = 1.

Solutions to the Problems

Lecture 69 | Explicit methods for
solving the diffusion
equation

View this lecture on YouTube

The initial value problem considered here is the one-dimensional diffusion equation for
u = u(x, t), given by

∂u
∂t

= D
∂2u
∂x2 ,

with boundary conditions u(−Lx, t) = u(Lx, t) = 0 and initial conditions u(x, 0) = u0(x).
We divide the line into Nx intervals using nx = Nx + 1 grid points. With grid spacing

∆x = 2Lx/Nx, the x coordinates of the grid points are given by

xj = −Lx + (j− 1)∆x, for j = 1, 2, . . . , nx.

Time is also discretized, and with time step ∆t, the solution is computed at the times

tl = (l − 1)∆t, for l = 1, 2,

We will denote the value of u(xj, tl) by ul
j. Here, we use the convention that subscripts on

u denote the spacial grid point and superscripts on u denote the time step.
The Forward Time Centered Space

(FTCS) discretization, with the relevant
grid points shown on the right, uses the
second-order central difference approxi-
mation for the second derivative and the
first-order Euler method for the time inte-
gration.

The discrete diffusion equation then becomes

ul+1
j = ul

j +
∆tD
(∆x)2

(
ul

j+1 − 2ul
j + ul

j−1

)
, for j = 2, 3, . . . , nx − 1 and l = 1, 2,

This type of method is called explicit because the solution at the time step l + 1 can be
written explicitly in terms of the solution at the earlier time step l. Higher-order time-
stepping methods can also be formulated using Runge-Kutta methods. We shall see in
the next lecture, however, that stability issues may be more important than the order of
the method.

149

https://youtu.be/MEqYYjGcnww

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 150

Problems for Lecture 69

1. Use the second-order Runge-Kutta method known as the modified Euler method to
write a two-step process for solving the one-dimensional diffusion equation.

2. Consider the one-dimensional advection equation given by

∂u
∂t

= −c
∂u
∂x

.

Using the second-order central difference approximation for the spatial derivative and
the first-order Euler method for the time integration, derive the FTCS scheme for the
advection equation.

Solutions to the Problems

Lecture 70 | Von Neumann
stability analysis

View this lecture on YouTube

We will analyze the stability of the FTCS scheme for the diffusion equation, given by

ul+1
j = ul

j +
∆tD
(∆x)2

(
ul

j+1 − 2ul
j + ul

j−1

)
.

We look for solutions of the form
ul

j = ξ leikj∆x,

where i =
√
−1; k is called the wavenumber of the mode and can be any value; ξ (here

raised to the lth power) is the unknown parameter that we will try to determine. If we
find that |ξ| > 1 for any value of the wavenumber k, then we say that the scheme is
unstable.

Substitution into the FTCS scheme for the diffusion equation results in

ξ l+1eikj∆x = ξ leikj∆x +
∆tD
(∆x)2

(
ξ leik(j+1)∆x − 2ξ leikj∆x + ξ leik(j−1)∆x

)
.

Dividing by ξ leikj∆x leads to

ξ = 1 +
∆tD
(∆x)2

(
eik∆x − 2 + e−ik∆x

)
.

Since eik∆x + e−ik∆x = 2 cos (k∆x), we obtain

ξ = 1 +
2∆tD
(∆x)2 (cos (k∆x)− 1) .

The value of |ξ| is largest when cos (k∆x) = −1, and the scheme is unstable when

1− 4∆tD
(∆x)2 < −1, or ∆t >

(∆x)2

2D
.

When a numerical scheme is unstable, the solution blows up in time, which is obviously
an unphysical solution of the diffusion equation. Using the FTCS scheme and other ex-
plicit methods, stability considerations limit the maximum time step that can be used. We
will see that implicit methods will remove this constraint.

151

https://youtu.be/QUiUGNwNNmo

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 152

Problems for Lecture 70

1. Analyze the stability of the FTCS scheme for the advection equation, given by

ul+1
j = ul

j −
c∆t
2∆x

(
ul

j+1 − ul
j−1

)
.

Solutions to the Problems

Lecture 71 | Implicit methods for
solving the diffusion
equation

View this lecture on YouTube

Instead of computing the spatial derivative
at the time tl , we compute it at the forward
time tl+1 (see the grid points on the right).
The discrete diffusion equation is now

ul+1
j = ul

j +
∆tD
(∆x)2

(
ul+1

j+1 − 2ul+1
j + ul+1

j−1

)
.

This method is called implicit because finding the solution at the time step l + 1 requires
solving a system of equations.

We can once again perform a stability analysis. With our ansatz

ul
j = ξ leikj∆x,

the implicit discrete diffusion equation results in

ξ l+1eikj∆x = ξ leikj∆x +
∆tD
(∆x)2

(
ξ l+1eik(j+1)∆x − 2ξ l+1eikj∆x + ξ l+1eik(j−1)∆x

)
.

Similar to before, dividing by ξ leikj∆x then leads to

ξ = 1 +
2∆tDξ

(∆x)2 (cos (k∆x)− 1) ,

where there is now a factor of ξ on the right-hand side. Solving for ξ, we obtain

ξ =
1

1 + 2∆tD
(∆x)2 (1− cos (k∆x))

,

which has magnitude always less than or equal to one. The implicit method is uncondi-
tionally stable.

153

https://youtu.be/DgyGoLxWmcg

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 154

Problems for Lecture 71

1. Consider the one-dimensional advection equation given by

∂u
∂t

= −c
∂u
∂x

.

a) By computing the spatial derivative at the advanced time step tl+1, derive the im-
plicit discrete advection equation.

b) Analyze its stability.

Solutions to the Problems

Lecture 72 | Crank-Nicolson
method for the
diffusion equation

View this lecture on YouTube

The most popular discretization of the one-dimensional diffusion equation is called the
Crank-Nicolson method and is a stable implicit method that also has the advantage of
being second-order in both space and time. To obtain Crank-Nicolson, we average the
previous spacial discretizations at the times tl and tl+1 to obtain a central difference ap-
proximation for the time derivative of u at the time tl+1/2. The discrete diffusion equation
becomes

ul+1
j = ul

j +
∆tD

2(∆x)2

((
ul

j+1 − 2ul
j + ul

j−1

)
+
(

ul+1
j+1 − 2ul+1

j + ul+1
j−1

))
.

If we define α = ∆tD/(∆x)2 and multiply the equation by two, we can write the Crank-
Nicolson method as

−αul+1
j+1 + 2(1 + α)ul+1

j − αul+1
j−1 = αul

j+1 + 2(1− α)ul
j + αul

j−1,

which leads to a tridiagonal matrix equation. For example, with spatial boundary condi-
tions given by ul

1 = ul
nx = 0, and for nx = 4, the matrix equation including the boundary

conditions is given by
1 0 0 0
−α 2(1 + α) −α 0
0 −α 2(1 + α) −α

0 0 0 1

ul+1
1

ul+1
2

ul+1
3

ul+1
4

 =

0

αul
1 + 2(1− α)ul

2 + αul
3

αul
2 + 2(1− α)ul

3 + αul
4

0

 .

Although ul
1 and ul

4 are zero on the right-hand side, we include them here for ease of
coding. The nx-by-nx matrix is independent of time step, and the right-hand side is
continuously updated as the solution evolves.

155

https://youtu.be/f_JZRjt8AZ4

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 156

Problems for Lecture 72

1. Consider the one-dimensional advection equation given by

∂u
∂t

= −c
∂u
∂x

.

The explicit Lax scheme for the advection equation is given by

ul+1
j =

1
2
(ul

j+1 + ul
j−1)−

c∆t
2∆x

(ul
j+1 − ul

j−1).

Analyze its stability and derive the Courant-Friedrichs-Lewy (CFL) stability criterion,
which is widely used in fluid turbulence simulations.

Solutions to the Problems

Lecture 73 | Matlab solution of
the diffusion equation

View this lecture on YouTube

We solve the one-dimensional diffusion equation for |x| ≤ Lx with u equal zero on the
boundaries. We will use the Crank-Nicolson method. The length is set by the parameter
Lx, and the number of spatial intervals is set by the parameter Nx. The number of grid
points is nx=Nx+1. The spatial grid size is dx and the time-step is dt. Here we set the
time-step at the stability limit for the FTCS scheme.

D=1; Lx=1; %Diffusion constant; Domain length

nsteps=10000; %number of time steps

nout=500; %plot every nout time steps

Nx=500; %number of intervals

nx=Nx+1;%number of gridpoints in x direction including boundaries

dx=2*Lx/Nx; %grid size in x

x=-Lx + (0:Nx)*dx; %x values on the grid

dt=(dx)^2/(2*D); %borderline stability of FTCS scheme

Next, the nx-by-nx matrix is constructed using spdiags. The top and bottom boundary
rows are replaced by the corresponding rows of the identity matrix:

alpha=dt*D/dx^2;

diagonals = [2*(1+alpha)*ones(nx,1), -alpha*ones(nx,2)];

A=spdiags(diagonals,[0 -1 1], nx, nx);

I=speye(nx);

A([1 nx],:)=I([1 nx],:); %boundaries

We next initialize the solution and plot the initial conditions. We choose a sharply peaked
Gaussian centered at x = 0. The values of u on the boundaries will be close enough to
zero and will not change.
sigma=Lx/16;

u=1/(sigma*sqrt(2*pi))*exp(-0.5*(x/sigma).^2); u=u';

plot(x,u); hold on;

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('$u(x, t)$','Interpreter','latex','FontSize',14);

title('Solution of the diffusion equation','Interpreter','latex','FontSize',16);

Finally, we evolve the diffusion equation by constructing the right-hand sides and solving
using the backslash operator. The solution is plotted every nout time steps.

for m=1:nsteps

b=[0; [alpha*u(1:nx-2) + 2*(1-alpha)*u(2:nx-1) + alpha*u(3:nx)]; 0];

u=A\b;

if mod(m,nout)==0, plot(x,u), end

end

See the next page for the resulting plot.

157

https://youtu.be/S3DXGvrdx1w

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 158

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 159

Problems for Lecture 73

1. a) Derive a second-order method for the x-derivative at boundary points. When x
is a boundary point on the left, use the Taylor series

y(x + h) = y(x) + hy′(x) +
1
2

h2y′′(x) + O(h3),

y(x + 2h) = y(x) + 2hy′(x) + 2h2y′′(x) + O(h3).

When x is a boundary point on the right, use the Taylor series

y(x− h) = y(x)− hy′(x) +
1
2

h2y′′(x) + O(h3),

y(x− 2h) = y(x)− 2hy′(x) + 2h2y′′(x) + O(h3).

b) No-flux boundary conditions sets ∂u/∂x equal to zero on the boundaries. Using the
results of Part a), determine boundary conditions for ul

1 and ul
nx .

2. Solve the one-dimensional diffusion equation for |x| ≤ L using the Crank-Nicolson
method. Assume no flux boundary conditions. Use the results of 1 (b).

Solutions to the Problems

Lecture 74 | Project VI: Two-
dimensional diffusion
equation

View this lecture on YouTube
Your final project is to solve the two-dimensional diffusion equation. You will combine
both the direct method for the Laplace equation and the Crank-Nicolson method.

The two-dimensional diffusion equation for u = u(x, y, t) on a square of side 2L is
given by

∂u
∂t

= D
(

∂2u
∂x2 +

∂2u
∂y2

)
,

where we will assume boundary conditions u(±L, y, t) = u(x,±L, t) = 0.

We form a two-dimensional spatial grid with N intervals and n = N + 1 grid points
in both the x- and y-directions. With grid spacing h = 2L/N, the x and y coordinates of
the grid points are given by

xi = −L + (i− 1)h, yj = −L + (j− 1)h,

for i, j = 1, 2, . . . , n. With time step given by ∆t, we have

tl = (l − 1)∆t, for l = 1, 2, . . . ;

and we denote the value of u(xi, yj, tl) by ul
i,j.

The Crank-Nicolson method applied to the two-dimensional diffusion equation results
in

ul+1
i,j = ul

i,j +
∆tD
2h2

((
ul

i+1,j + ul
i−1,j + ul

i,j+1 + ul
i,j−1 − 4ul

i,j

)
+
(

ul+1
i+1,j + ul+1

i−1,j + ul+1
i,j+1 + ul+1

i,j−1 − 4ul+1
i,j

))
.

We define α = ∆tD/h2, multiply by two and rearrange terms to obtain

2(1 + 2α)ul+1
i,j − α

(
ul+1

i+1,j + ul+1
i−1,j + ul+1

i,j+1 + ul+1
i,j−1

)
= 2(1− 2α)ul

i,j + α
(

ul
i+1,j + ul

i−1,j + ul
i,j+1 + ul

i,j−1

)
.

Finally, applying natural ordering with the mapping (i, j) → k = i + (j− 1)n, we obtain

160

https://youtu.be/-DJJqgr6HdE

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 161

the equation

2(1 + 2α)ul+1
k − α

(
ul+1

k+1 + ul+1
k−1 + ul+1

k+n + ul+1
k−n

)
= 2(1− 2α)ul

k + α
(

ul
k+1 + ul

k−1 + ul
k+n + ul

k−n

)
.

This is a matrix equation with a time-independent banded matrix with five diagonals. The
right-hand side is time dependent. Since you will need to solve a large n2-by-n2 matrix
equation at each time step, the LU decomposition of the matrix can be performed once
and then used to speed-up the code.

WEEK VI. PARTIAL DIFFERENTIAL EQUATIONS 162

Problems for Lecture 74

1. Solve the two-dimensional diffusion equation on a square with u equal to zero on the
boundaries.

Solutions to the Problems

Problem solutions and
Matlab learner templates

163

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 164

Solutions to the Problems for Lecture 1

1. A binary number rounded to six places after the binary point will round up if the
truncated number is greater than 2−7 and will round down if the truncated number is
less than 2−7. We have

1
3
= 0.01010101 ≈ 0.010101,

1
5
= 0.0011001100 ≈ 0.001101,

1
6
= 0.00101010 ≈ 0.001011,

1
7
= 0.001001001 ≈ 0.001001,

1
9
= 0.000111000111 ≈ 0.000111.

The numbers 1/3, 1/7 and 1/9 round down and the numbers 1/5 and 1/6 round up.

Solutions to the Problems for Lecture 2

1. Using decimal notaton, the number 1 corresponds to s = 0, e = 1023 and f = 0.
The binary for 1023 can be found from 1023 = 210 − 1, so that e = 100 0000 0000 −
000 0000 0001 = 011 1111 1111, resulting in the double precision format for 1 to be

0011 1111 1111 0000 . . . 0000.

This number is usually written in hex, which replaces every four bits by a numeral rep-
resenting the decimal numbers 0− 15. The numerals for 0− 9 are retained, and those for
10− 15 are written using the letters a, b, ..., f. We would therefore write the computer
number representing 1 as

3ff0 0000 0000 0000.

The number 1/2 corresponds to s = 0, e = 1022 and f = 0. The binary for 1022 is
e = 011 1111 1110, resulting in the double precision format for 1/2 to be

0011 1111 1110 0000 . . . 0000,

which in hex is given by
3fe0 0000 0000 0000.

To determine the computer number for 1/3, we first write

1
3
=

1
4

(
1 +

1
3

)
.

We can observe that e = 1021 and f = 1/3, which in binary becomes e = 011 1111 1101
and f = 0101 . . . 0101, where we have rounded down. We would therefore write the
computer number representing 1/3 as

0011 1111 1101 0101 0101 . . . 0101,

which in hex is given by
3fd5 5555 5555 5555.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 165

2. The largest number corresponds to s = 0, e = 211 − 2 − 1023 = 1023, and 1. f =

1 + (1− 2−52). Therefore
realmax = 21023(2− 2−52) = 1.7977e+308.

3. The smallest positive normal number corresponds to s = 0, e = 1, and 1. f = 1 + 0.
Therefore
realmin = 2−1022 = 2.2251e-308.

4. The number one is represented as (−1)0 × 20 × 1.0. The next largest number is
(−1)0 × 20 × (1 + 2−52. Therefore, eps = 2−52 = 2.2204e-16.

Solutions to the Problems for Lecture 3

1.

a) (sqrt(5)-1)/2

0.6180

b) (((sqrt(5)+1)/2)^10 - ((sqrt(5)-1)/2)^10)/sqrt(5)

55.0000 (Try subtracting 55 from this number.)

c) 2^5/(2^5-1)

1.0323

d) (1-1/2^5)^-1

1.0323

e) exp(1)^3

20.0855

f) log(exp(1)^3)

3.0000 (Try subtracting 3 from this number.)

g) sin(pi/6)

0.5000 (Try subtracting 0.5 from this number.)

h) cos(pi/6)

0.8660

i) sin(pi/6)^2 + cos(pi/6)^2

1 (Notice the format, and try subtracting 1 from this number.)

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 166

Solutions to the Problems for Lecture 4

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

function F = Fibonacci(n)

% Assign Phi, phi, and F below. Do not change these variable names.

Phi =

phi =

F =

end

Here is a test of the finished function:
>> Fibonacci(30)

ans =

832040

>>

Solutions to the Problems for Lecture 5

1. Complete your solution on Coursera using Matlab. Here is the Learner Template.
Script was saved as trig_values.m.

% Assign x below to a row vector. Do not change this variable name.

x =

fprintf('x: '); fprintf('%7.4f ', x); fprintf('\n');

fprintf('cos(x):'); fprintf('%7.4f ', cos(x)); fprintf('\n');

fprintf('sin(x):'); fprintf('%7.4f ', sin(x)); fprintf('\n');

>> trig_values

x: 0.0000 0.5236 0.7854 1.0472 1.5708

cos(x): 1.0000 0.8660 0.7071 0.5000 0.0000

sin(x): 0.0000 0.5000 0.7071 0.8660 1.0000

>>

Solutions to the Problems for Lecture 6

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

k = 0.05;

% Assign theta, x, and y below. Do not change these variable names.

theta =

x =

y =

% Graphics

plot(x,y)

axis equal

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 167

xlabel('x', 'Interpreter', 'latex', 'FontSize', 14)

ylabel('y', 'Interpreter', 'latex', 'FontSize', 14)

title('Logarithmic Spiral','Interpreter','latex','FontSize', 16)

Your plot should look like this:

-4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

2. Complete your solution on Coursera using Matlab. Here is the Learner Template:

% Assign theta, x, and y below. Do not change these variable names.

theta =

x =

y =

% graphics

plot(x,y,'r',-x,y,'r')

axis equal;

axis([-1.5 1.5 -1 1])

xlabel('x', 'Interpreter', 'latex', 'FontSize',14);

ylabel('y', 'Interpreter', 'latex', 'FontSize',14);

title('Leminscate', 'Interpreter', 'latex', 'FontSize', 16)

Your plot should look like this:

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 168

Solutions to the Problems for Lecture 7

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

% Assign the matrix A. Use the ones.m function and the colon operator.

A =

B = A([1,3],[2,4])

C = A(:,[1,4:6])

D = A([2,3],:)

2. Complete your solution on Coursera using Matlab. Here is the Learner Template:

function [A, B, C] = banded_matrices(n)

% Assign A, B and C below.

A =

B =

C =

end

Solutions to the Problems for Lecture 8

1.
>> 14>15/3

ans =

1

>> 8/2<5*3+1>9

ans =

0

>> 8/(2<5)*3+(1>9)

ans =

24

>> 2+4+3~=60/4-1

ans =

1

>>

2.
>> u=[4 -2 1]; v=[0 2 1];

>> u<=v

ans =

0 1 1

>> u==v

ans =

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 169

0 0 1

>> u<u+v

ans =

0 1 1

>> (u<v)+u

ans =

4 -1 1

>>

Solutions to the Problems for Lecture 9

1.
function [p, q] = quadratic_formula_1(a, b, c)

% standard quadratic formula

p=(-b+sqrt(b.^2 - 4.*a.*c))./(2*a);

q=(-b-sqrt(b.^2 - 4.*a.*c))./(2*a);

end

>> [p, q] = quadratic_formula_1(1, -1, -6)

p =

3

q =

-2

>> [p, q] = quadratic_formula_1(1, 1, -6)

p =

2

q =

-3

>> [p, q] = quadratic_formula_1(1, -1e12, 1)

p =

1.0000e+12

q =

0

>>

function [p, q] = quadratic_formula_2(a, b, c)

% better computational quadratic formula

if b<0

p=(-b+sqrt(b.^2 - 4.*a.*c))./(2*a);

q=(2*c)./(-b+sqrt(b.^2 - 4.*a.*c));

else

p=(2*c)./(-b-sqrt(b.^2 - 4.*a.*c));

q=(-b-sqrt(b.^2 - 4.*a.*c))./(2*a);

end

>> [p, q] = quadratic_formula_2(1, -1, -6)

p =

3

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 170

q =

-2

>> [p, q] = quadratic_formula_2(1, 1, -6)

p =

2

q =

-3

>> [p, q] = quadratic_formula_2(1, -1e12, 1)

p =

1.0000e+12

q =

1.0000e-12

>>

Solutions to the Problems for Lecture 10

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

function F = Fibonacci(n)

% Returns the nth Fibonacci number using recursion relation

n=round(n); % n must be an integer

Here are some sample function calls:

>> Fibonacci(9)

ans =

34

>> Fibonacci(-9)

ans =

34

>> Fibonacci(30)

ans =

832040

>> Fibonacci(-30)

ans =

-832040

>>

Solutions to the Problems for Lecture 11

1. We solve

x = f
(

f (x)
)
= f

(
µx(1− x)

)
= r
(
µx(1− x)

)(
1− µx(1− x)

)
.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 171

Expanding, we obtain the quartic equation

µ3x4 − 2µ3x3 + µ2(1 + µ)x2 + (1− µ2)x = 0.

Two solutions corresponding to period-1 cycles are known: x = 0 and x = 1− 1/µ. We
factor out these two solutions, the second by using long division, and divide by µ. The
result is the quadratic equation

µ2x2 − µ(µ + 1)x + (µ + 1) = 0.

The period-2 cycle, then, corresponds to the two roots of this quadratic equation; that is,

x1 =
1

2µ

(
(µ + 1) +

√
(µ + 1)(µ− 3)

)
, x2 =

1
2µ

(
(µ + 1)−

√
(µ + 1)(µ− 3)

)
.

These roots are valid solutions for µ ≥ 3. Exactly at µ = 3, x1 = x2 = 2/3, which coincides
with the value of the fixed point 1− 1/µ = 2/3. At µ = 3, we will see that the fixed point
of the logistic map bifurcates to a period-2 cycle.

Solutions to the Problems for Lecture 12

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

mu_min=2.4; mu_max=4; %range of mu values

n_mu=500; %number of mu pixels

n_x=400; %number of x pixels

mu_edges=linspace(mu_min,mu_max,n_mu+1); %edges of mu pixels

mu=(mu_edges(1:n_mu)+mu_edges(2:n_mu+1))/2; %values of mu on which to perform computation

x_edges=linspace(0,1,n_x+1); %edges of x pixels

n_trans=200000; %transient iterations

n_data=100000; %number of x values per mu value

x_data=zeros(n_data,n_mu); %x-data used to construct figure

x_0=0.5; %initial condition

% WRITE THE COMPUTATIONAL ENGINE OF THE CODE.

% USE THE ALREADY DEFINED PARAMETERS AND VARIABLES: n_mu, mu, x_0, n_trans, n_data.

% YOUR FINAL RESULT WILL BE THE VARIABLE x_data, and this variable will be assessed.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 172

%%%%% bin data and plot image %%%

x_histogram=zeros(n_x,n_mu); %binned values of x

for i=1:n_mu

x_histogram(:,i)=histcounts(x_data(:,i),x_edges);

x_histogram(:,i)=255*x_histogram(:,i)/max(x_histogram(:,i));

end

colormap(flipud(gray(256))); brighten(-0.8); cmap=colormap;

im=image([mu_edges(1) mu_edges(end)], [x_edges(1) x_edges(end)], x_histogram);

set(gca,'YDir','normal');

xlabel('μ','Interpreter','latex','FontSize',14);

ylabel('$x\;\;$','Interpreter','latex','FontSize',14);

title('Logistic Map Bifurcation Diagram','Interpreter','latex','FontSize',16)

Solutions to the Problems for Lecture 13

1. Now
√

3 is the zero of the function f (x) = x2 − 3, and f (x0 = 1) = −2 and f (x1 =

2) = 1, so that the two initial guesses bracket the root. We iterate the algorithm. We have

x2 = 2− 2− 1
2

=
3
2
= 1.5.

Now, f (x2) = 9/4− 3 = −3/4 < 0 so that x1 and x2 bracket the root. Therefore,

x3 =
3
2
−

3
2 − 2

2
=

7
4
= 1.75.

Now, f (x3) = 49/16− 3 = 1/16 > 0 so that x2 and x3 bracket the root. Therefore,

x4 =
7
4
−

7
4 −

3
2

2
=

13
8

= 1.624,

and so on.

Solutions to the Problems for Lecture 14

1. We solve f (x) = 0, where f (x) = x2 − 3. We use f ′(x) = 2x. Therefore, Newton’s
method iterates

xn+1 = xn −
x2

n − 3
2xn

.

Choosing an initial guess x0 = 1, we have

x1 = 1− −2
2
= 2,

x2 = 2− 4− 3
4

=
7
4
= 1.75,

x3 =
7
4
−

72

42 − 3
14
4

=
388
224

= 1.73214,

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 173

already accurate to four significant digits.

Solutions to the Problems for Lecture 15

1. We solve f (x) = 0, where f (x) = x2 − 3. The secant method iterates

xn+1 = xn −
(x2

n − 3)(xn − xn−1)

x2
n − x2

n−1

= xn −
(x2

n − 3)
xn + xn−1

.

With x0 = 1 and x1 = 2, we have

x2 = 2− 4− 3
3

=
5
3
= 1.66666,

x3 =
5
3
−

25
9 − 3
5
3 + 2

=
57
33

= 1.72727,

x4 =
57
33
−
(57

33
)2 − 3

57
33 + 5

3
=

1067
616

= 1.73214,

and so on.

Solutions to the Problems for Lecture 16

1. Use |εn+1| = 0.5|εn|p.

Error
Iteration # p = 1 p = 1.6 p = 2

0 1 1 1

1 0.5 0.5 0.5

2 0.25 0.165 0.125

3 0.125 2.80e-02 7.81e-03

4 0.0625 1.64e-03 3.05e-05

5 3.13e-02 1.74e-05 4.66e-10

Solutions to the Problems for Lecture 17

1. We start with
xn+1 = xn −

(xn − xn−1) f (xn)

f (xn)− f (xn−1)
.

a) Let εn = r− xn. Then xn = r− εn and xn−1 = r− εn−1, so that

xn − xn−1 = (r− εn)− (r− εn−1)

= (εn−1 − εn).

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 174

Subtract both sides of the secant method from r to obtain

εn+1 = εn +
(εn−1 − εn) f (r− εn)

f (r− εn)− f (r− εn−1)
.

b) We Taylor series f for small ε, using f (r) = 0, to obtain

f (r− εn) = −εn f ′(r) +
1
2

ε2
n f ′′(r) + . . . ,

f (r− εn−1) = −εn−1 f ′(r) +
1
2

ε2
n−1 f ′′(r) + . . . ,

so that

f (r− εn)− f (r− εn−1) = (εn−1 − εn) f ′(r) +
1
2
(ε2

n − ε2
n−1) f ′′(r) + . . .

= (εn−1 − εn)

(
f ′(r)− 1

2
(εn−1 + εn) f ′′(r) + . . .

)
,

and the secant method becomes

εn+1 = εn +
−εn f ′(r) + 1

2 ε2
n f ′′(r) + . . .

f ′(r)− 1
2 (εn−1 + εn) f ′′(r) + . . .

.

c) We rewrite the previous equation to obtain

εn+1 == εn − εn
1− 1

2 εn
f ′′(r)
f ′(r) + . . .

1− 1
2 (εn−1 + εn)

f ′′(r)
f ′(r) + . . .

.

We now Taylor series expand the denominator to obtain

εn+1 = εn − εn

(
1− 1

2
εn

f ′′(r)
f ′(r)

+ . . .
)(

1 +
1
2
(εn−1 + εn)

f ′′(r)
f ′(r)

+ . . .
)

= −1
2

f ′′(r)
f ′(r)

εnεn−1 + . . . ,

or to leading order

|εn+1| =
1
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ |εn||εn−1|. (1)

d) To determine the order of convergence, we look for a solution of the form

|εn+1| = k|εn|p, |εn| = k|εn−1|p.

Substitution into (1) results in

kp+1|εn−1|p
2
=

k
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ |εn−1|p+1.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 175

Equating the power of εn−1 results in

p2 = p + 1.

The rate of convergence of the secant method, given by p, is therefore the positive
root of the quadratic equation p2 − p− 1 = 0, or

p =

√
5 + 1
2

≈ 1.618,

which coincidentally is the famous irrational number that is called the golden ratio,
and goes by the symbol Φ.

Solutions to the Problems for Lecture 18

1. We are looking for the four solutions to z4 = 1. Clearly, one and minus one are
solutions. Since i2 = (−i)2 = −1, the four solutions, moving counterclockwise around
the unit circle, are evidently

r1 = 1, r2 = i, r3 = −1, r4 = −i.

Their location on the unit circle in the complex plane is shown below.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 176

Solutions to the Problems for Lecture 19

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

% code the function and its derivative that will be used in Newton's method

f = @(z) add function here

fp = @(z) add derivative here

% assign the four fourth roots of unity,

% starting at 1 and moving around the unit circle counterclockwise

root1 = 1;

root2 = add second root here

root3 = add third root here

root4 = add fourth root here

nx=1000; ny=1000;

xmin=-2; xmax=2; ymin=-2; ymax=2;

x=linspace(xmin,xmax,nx); y=linspace(ymin,ymax,ny);

[X,Y]=meshgrid(x,y);

Z=X+1i*Y;

nit=50;

for n=1:nit

Z = Z - f(Z) ./ fp(Z);

end

eps=0.001;

Z1 = abs(Z-root1) < eps; Z2 = abs(Z-root2) < eps;

Z3 = abs(Z-root3) < eps; Z4 = abs(Z-root4) < eps;

Z5 = ~(Z1+Z2+Z3+Z4);

figure;

map = [1 0 0; 0 1 0; 0 0 1; 1 1 0; 0 0 0];

colormap(map); %[red;blue;green;yellow;black]

Z=(Z1+2*Z2+3*Z3+4*Z4+5*Z5);

image([xmin xmax], [ymin ymax], Z); set(gca,'YDir','normal');

xlabel('x', 'Interpreter', 'latex', 'FontSize',14);

ylabel('y', 'Interpreter', 'latex', 'FontSize',14);

title('Fractal from $f(z)=z^4-1$', 'Interpreter', 'latex','FontSize', 16)

Your plot should look like this:

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 177

Solutions to the Problems for Lecture 20

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

period=1; omega=2*pi/period;

e=[0,1/4,1/2,3/4]; color=['r','g','b','c'];

a=1./(1-e); b=sqrt((1+e)./(1-e));

t=linspace(0,period,1000);

x=zeros(length(t),length(e)); y=zeros(length(t),length(e));

for j=1:length(e)

for i=1:length(t)

E=fzero(@(E) ... ,0); % add anonymous function for root finding.

% Make use of the variables e(j), t(i) and omega.

x(i,j)= ; % assign x-coordinate. Make use of the variables a(j), e(j) and E.

y(i,j)= ; % assign y-coordinate. Make use of the variables b(j) and E.

end

end

for j=1:length(e)

plot(x(:,j),y(:,j),color(j)); axis equal; hold on;

end

plot(0,0,'xk') %mark the origin

xlabel('x', 'Interpreter', 'latex', 'FontSize',14)

ylabel('y', 'Interpreter', 'latex', 'FontSize',14)

legend('$e=0$','$e=1/4$','$e=1/2$','$e=3/4$','Interpreter','latex','Location','East')

title('Planetary Orbits', 'Interpreter', 'latex', 'FontSize',16)

Your plot should look like this:

-1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 178

Solutions to the Problems for Lecture 21

1.

a) The period-two fixed point equations are given by

x1 = µx0(1− x0), x0 = µx1(1− x1).

We can eliminate x1 to obtain the single equation

x0 = µ(µx0(1− x0))(1− µx0(1− x0)).

Substituting x0 = 1/2, we have

1
2
= µ(

µ

4
)(1− µ

4
).

Multiplying by 16 and expanding, we obtain µ3 − 4µ2 + 8 = 0.

b) The long division, complements of the LATEX Polynom Package, is given by

x2 − 2x− 4

x− 2
)

x3 − 4x2 + 8
− x3 + 2x2

− 2x2

2x2 − 4x

− 4x + 8
4x− 8

0

The roots of
µ2 − 2µ− 4 = 0

are given by

µ =
2±
√

4 + 16
2

= 1±
√

5,

and the positive root yields m1 = 1 +
√

5.

Solutions to the Problems for Lecture 23

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

% Compute the Feigenbaum delta

% Store approximate values in the row vector delta for assessment,

% where length(delta)= num_doublings and delta(2:num_doublings)

% are computed from the algorithm described in Lectures 21-23.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 179

num_doublings=11; delta=zeros(1,num_doublings); delta(1)=5;

% Write your code here

% Output your results

fprintf('n delta(n)\n');

for n=1:num_doublings

fprintf('%2g %18.15f\n',n,delta(n));

end

Solutions to the Problems for Lecture 24

1. Using Matlab as a calculator, we have

>> x2=(-4/eps + 1)/(-2/eps - 1)

x2 =

2

>> x1=(4-2*x2)/eps

x1 =

0

>> x2=(-4/(2*eps) + 1)/(-2/(2*eps) - 1)

x2 =

2.0000

>> x1=(4-2*x2)/(2*eps)

x1 =

3

>>

Solutions to the Problems for Lecture 25

1. Using Matlab as a calculator, we have

>> x2=(4-eps)/(2+eps)

x2 =

2

>> x1=1+x2

x1 =

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 180

3

>> x2=(4-2*eps)/(2+2*eps)

x2 =

2.0000

>> x1=1+x2

x1 =

3.0000

>>

Solutions to the Problems for Lecture 26

1. We begin with a row exchange:

A =

−3 2 −1
6 −6 7
3 −4 4

→
 6 −6 7
−3 2 −1

3 −4 4

 = P12A.

The first elimination step is

P12A→

6 −6 7
0 −1 5/2
3 −4 4

 = M1P12A, where M1 =

 1 0 0
1/2 1 0
0 0 1

 .

The second elimination step is

M1P12A→

6 −6 7
0 −1 5/2
0 −1 1/2

 = M2M1P12A, where M2 =

 1 0 0
0 1 0

−1/2 0 1

 .

No more row interchanges are needed and the third elimination step is

M2M1P12A→

6 −6 7
0 −1 5/2
0 0 −2

 = M3M2M1P12A = U, where M3 =

1 0 0
0 1 0
0 −1 1

 .

Taking the inverse of the matrix multiplying A, we have

A = P12(M3M2M1)
−1U = (P12L)U,

where the upper triangular and psychologically lower triangular matrices are given by

U =

6 −6 7
0 −1 5/2
0 0 −2

 , (P12L) = P12

 1 0 0
−1/2 1 0

1/2 1 1

 =

−1/2 1 0
1 0 0
1/2 1 1

 .

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 181

Solutions to the Problems for Lecture 27

1. Let TL be the time to compute recombination with L loci. We have

TL = k3L,

so that
TL+1 = k3L+1 = 3k3L = 3TL.

If L = 15 takes 10 sec, then the time for L = 16 is estimated to be 3× 10 sec = 30 sec.

Solutions to the Problems for Lecture 28

1.

a) The summation denoted as ∑n
k=1 1 is just the addition of n ones and is equal to n.

b) The simplest way to compute ∑n
k=1 k is to define this sum to be X, and to write X

twice as follows:

X = 1+ 2 + 3 + . . .+ n

X = n + (n− 1) + (n− 2)+ . . .+ 1.

Adding these two equations yields 2X = n(n + 1), or X = n(n + 1)/2.

c) The trick to compute ∑n
k=1 k2 is to use the expansion (k − 1)3 = k3 − 3k2 + 3k − 1,

and to write k3 − (k− 1)3 = 3k2 − 3k + 1. Since ∑n
k=1 k3 − (k− 1)3 is what is called a

telescoping series (each new term cancels with part of the preceding term), we have

n

∑
k=1

k3 − (k− 1)3 = n3 = 3
n

∑
k=1

k2 − 3
n

∑
k=1

k +
n

∑
k=1

1.

Therefore,

n

∑
k=1

k2 =
1
3

(
n3 +

3n(n + 1)
2

− n
)
=

1
6

n(2n + 1)(n + 1).

Solutions to the Problems for Lecture 29

1. The solution for xi is found after solving for xj with j < i. The explicit solution for xi is
given by

xi =
1
aii

(
bi −

i−1

∑
j=1

aijxj

)
.

The solution for xi requires i multiplication-additions, and since this must be done for n
such i′s, we have

op. counts =
n

∑
i=1

i =
1
2

n(n + 1).

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 182

Solutions to the Problems for Lecture 30

1. The two largest eigenvalues are λ1 = 1 and λ2 = 1/2 with corresponding eigenvectors
e1 and e2. Suppose x0 = c1e1 + c2e2 + Then

xp = c1λ
p
1 e1 + c2λ

p
2 e2 + · · · = c1e1 + (1/2)pc2e2 +

We estimate that to converge to an error of less than 10−8, we need to require

(1/2)p ≈ 10−8,

or p ≈ 8/ log10 2 ≈ 27.

Solutions to the Problems for Lecture 31

1. We apply the power method to

A =

(
−5 6

5 −4

)
.

The assumed initial vector and first iteration is given by

x0 =

(
1
0

)
, x1 = Ax0 =

(
−5

5

)
.

Continuing,

x2 =

(
−5 6

5 −4

)(
−5

5

)
=

(
55
−45

)
; x3 =

(
−5 6

5 −4

)(
56
44

)
=

(
−545

455

)
.

Two more iterations give

x4 =

(
−5 6

5 −4

)(
−545

455

)
=

(
5,455
−4,545

)
; x5 =

(
−5 6

5 −4

)(
5,455
−4,545

)
=

(
−54,545

45,455

)
.

The dominant eigenvalue is approximated from

λ1 ≈
xT

4 x5

xT
4 x4

=
−504,135,950

50,414,050
≈ −9.99991 ≈ −10;

and the corresponding eigenvector is approximated by x5. Dividing by the second com-
ponent,

v1 =

(
−54,545/45,455

1

)
≈
(
−1.19998

1

)
≈
(
−6/5

1

)
.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 183

Solutions to the Problems for Lecture 32

1. Complete your solution on Matlab. Here is the Learner Template:

% Define matrix A

% Define L to be the psychologically lower triangular matrix

% Define U to be the upper triangular matrix

2. Complete your solution on Matlab. Here is the Learner Template:

% Define matrix A

% Find eigenvalues, lambda1<lambda2

lambda1= ...

lambda2= ...

% Find eigenvectors associated with lambda1 and lambda2

% Normalize eigenvectors so that their second component is one

v1= ...

v2= ...

Solutions to the Problems for Lecture 33

1. We write down the algorithm to solve

f (x, y, z) = 0, g(x, y, z) = 0, h(x, y, z) = 0.

1. Solve the linear system for ∆xn, ∆yn and ∆zn given by fx fy fz

gx gy gz

hx hy hz

∆xn

∆yn

∆zn

 =

− f
−g
−h

 .

2. Advance the iterative solution, using

xn+1 = xn + ∆xn, yn+1 = yn + ∆yn, zn+1 = zn + ∆zn.

Solutions to the Problems for Lecture 34

1. We solve
σ(y− x) = 0, rx− y− xz = 0, xy− βz = 0.

By inspection, the first fixed-point solution is (x, y, z) = (0, 0, 0), and another two can be
found. The first equation yields x = y. Eliminating y from the second equation results in
x(r− 1− z) = 0, with solutions x = 0 or z = r− 1. The x = 0 solution corresponds to the

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 184

first fixed-point solution. Substituting y = x and z = r− 1 into the third equation results
in x2 = β(r − 1). The square root results in the second and third fixed-point solutions.
Our three solutions are

(x, y, z) = (0, 0, 0), (
√

β(r− 1),
√

β(r− 1), r− 1), (−
√

β(r− 1),−
√

β(r− 1), r− 1).

When r = 28, σ = 10 and β = 8/3, the numerical values are

(x, y, z) = (0, 0, 0), (8.48528, 8.48528, 27), (−8.48528,−8.48528, 27).

2. Complete your solution on Coursera using Matlab. Here is the Learner Template:

r=28; sigma=10; b=8/3;

RelTol=1.e-06; AbsTol=1.e-09;

for nroot=1:3

if nroot==1, x=1; y=1; z=1; end

if nroot==2, x=10; y=10; z=10; end

if nroot==3, x=-10; y=-10; z=-10; end

error=Inf;

while error > max(RelTol*max(abs([x,y,z])),AbsTol)

J= % DEFINE THE JACOBIAN MATRIX

rhs = % DEFINE THE RIGHT-HAND SIDE

delta_xyz=J\rhs;

x = x + delta_xyz(1);

y = y + delta_xyz(2);

z = z + delta_xyz(3);

error=max(abs(delta_xyz));

end

xroot(nroot)=x; yroot(nroot)=y; zroot(nroot)=z;

end

roots=[xroot;yroot;zroot];

fprintf('steady-state solution:\n')

fprintf('(x, y, z) = (%2.0f,%2.0f,%2.0f) \n', roots(:,1));

fprintf('(x, y, z) = (%7.5f,%7.5f,%3.0f) \n', roots(:,2));

fprintf('(x, y, z) = (%7.5f,%7.5f,%3.0f) \n', roots(:,3));

Solutions to the Problems for Lecture 35

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

r=28; sigma=10; beta=8/3;

x1=0; y1=0; z1=0;

x2=sqrt(beta*(r-1)); y2=sqrt(beta*(r-1)); z2=r-1;

x3=-sqrt(beta*(r-1)); y3=-sqrt(beta*(r-1)); z3=r-1;

nx=500; ny=500;

xmin=-30; xmax=30; ymin=-30; ymax=30;

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 185

x_grid=linspace(xmin,xmax,nx); y_grid=linspace(ymin,ymax,ny);

[X,Y]=meshgrid(x_grid,y_grid);

% Write Newton's method using every gridpoint as the initial condition

% Perform enough iterations at each gridpoint to converge to the correct root

% Save the x-values of the converged roots in the matrix X

% To pass the assessment, every pixel in the figure must be correctly colored

%!!!!!!!!! Set initial value z=-10 for all values (x,y) on the grid !!!!!!!!!!

eps=0.001;

X1 = abs(X-x1) < eps; X2 = abs(X-x2) < eps; X3 = abs(X-x3) < eps;

X4 = ~(X1+X2+X3);
figure;

map = [1 0 0; 0 1 0; 0 0 1; 0 0 0]; colormap(map); %[red;green;blue;black]

X=(X1+2*X2+3*X3+4*X4);

image([xmin xmax], [ymin ymax], X); set(gca,'YDir','normal');

xlabel('x', 'Interpreter', 'latex', 'FontSize',14);

ylabel('y', 'Interpreter', 'latex', 'FontSize',14);

title('Fractal from the Lorenz Equations', 'Interpreter', 'latex','FontSize', 16)

Solutions to the Problems for Lecture 36

1. The midpoint rule approximates the area under the curve of y = f (x) from zero to h by
the area of a rectangle with base h and height f (h/2), as illustrated in the graph below.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 186

2. We have ∫ h

0
f (x) dx =

∫ h

0
(a + bx + cx2) dx

= (ax +
bx2

2
+

cx3

3
)

∣∣∣∣h
0

= ah +
bh2

2
+

ch3

3

= h
(

a +
bh
2

+
ch2

3

)
.

Now,

f (h/2) = a +
bh
2

+
ch2

4
, f ′′(h/2) = 2c.

Therefore,

∫ h

0
f (x) dx = h

(
a +

bh
2

+
ch2

3

)
= h

(
a +

bh
2

+
ch2

4

)
+ h

(
ch2

3
− ch2

4

)
= h

(
a +

bh
2

+
ch2

4

)
+ h

(
ch2

12

)
= h f (h/2) +

h3

24
f ′′(h/2).

Solutions to the Problems for Lecture 37

1. We approximate

f (x) ≈ f (0) +
f (h)− f (0)

h
x.

Then ∫ h

0
f (x) dx =

∫ h

0

(
f (0) +

f (h)− f (0)
h

x
)

dx

=

(
f (0)x +

f (h)− f (0)
2h

x2
) ∣∣∣∣h

0

= f (0)h +
1
2
(f (h)− f (0)) h

=
h
2
(f (0) + f (h)) .

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 187

Solutions to the Problems for Lecture 38

1.

a) Let g(x) = a + bx + cx2. The equations that we want to solve for a, b and c are given
by

g(0) = a = f (0),

g(h) = a + hb + h2c = f (h),

g(2h) = a + 2hb + 4h2c = f (2h),

or in matrix form 1 0 0
1 h h2

1 2h 4h2

a

b
c

 =

 f (0)
f (h)

f (2h)

 .

We form the augmented matrix and solve by Gaussian elimination:

1 0 0 f (0)
1 h h2 f (h)
1 2h 4h2 f (2h)

→
1 0 0 f (0)

0 h h2 f (h)− f (0)
0 2h 4h2 f (2h)− f (0)

→

1 0 0 f (0)
0 h h2 f (h)− f (0)
0 0 2h2 f (2h)− 2 f (h) + f (0)

 .

Backsubstitution gives

c =
1

2h2

(
f (0)− 2 f (h) + f (2h)

)
,

b =
1
h

(
f (h)− f (0)− 1

2
(

f (2h)− 2 f (h) + f (0)
))

=
1

2h
(
−3 f (0) + 4 f (h)− f (2h)

)
,

a = f (0).

b) We approximate f (x) by the quadratic polynomial g(x), that is,

f (x) ≈ f (0) +
1

2h
(
−3 f (0) + 4 f (h)− f (2h)

)
x +

1
2h2

(
f (0)− 2 f (h) + f (2h)

)
x2.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 188

Then

∫ 2h

0
f (x) dx ≈

∫ 2h

0

(
f (0) +

1
2h
(
−3 f (0) + 4 f (h)− f (2h)

)
x

+
1

2h2

(
f (0)− 2 f (h) + f (2h)

)
x2
)

dx

=

(
f (0)x +

1
4h
(
−3 f (0) + 4 f (h)− f (2h)

)
x2 +

1
6h2

(
f (0)− 2 f (h) + f (2h)

)
x3
)∣∣∣∣2h

0

= 2h f (0) + h
(
−3 f (0) + 4 f (h)− f (2h)

)
+

4h
3
(

f (0)− 2 f (h) + f (2h)
)

=
h
3
(f (0) + 4 f (h) + f (2h)) .

Solutions to the Problems for Lecture 39

1. We have

∫ b

a
f (x) dx =

3h
8

(f0 + 3 f1 + 3 f2 + f3) +
3h
8

(f3 + 3 f4 + 3 f5 + f6) + . . .

+
3h
8

(fn−3 + 3 fn−2 + 3 fn−1 + fn)

=
3h
8

(f0 + 3 f1 + 3 f2 + 2 f3 + 3 f4 + 3 f5 + 2 f6 + · · ·+ 3 fn−2 + 3 fn−1 + fn) ,

where the first and last terms have a multiple of one, the terms with indices that have a
remainder of one or two when divided by three have a multiple of three, the terms with
indices that are a multiple of three have an index of two, and the entire sum is multiplied
by 3h/8.

Solutions to the Problems for Lecture 40

1. The three-point Legendre-Gauss quadrature rule is written as

∫ 1

−1
f (x) dx = w1 f (x1) + w2 f (x2) + w3 f (x3).

We will assume that x1 = −x3, w1 = w3 and x2 = 0. Substituting for the function the
basis polynomials f (x) = 1, x, x2, x3, x4 and x5, we obtain the six equations given by

2 = w1 + w2 + w3, 0 = w1x1 + w2x2 + w3x3, 2/3 = w1x2
1 + w2x2

2 + w3x2
3,

0 = w1x3
1 + w2x3

2 + w3x3
3, 2/5 = w1x4

1 + w2x4
2 + w3x4

3, 0 = w1x5
1 + w2x5

2 + w3x5
3.

Using the symmetry conditions, the third and fifth equations result in

2w1x2
1 = 2/3, 2w1x4

1 = 2/5.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 189

Division of the second of these two equations by the first yields

x2
1 = 3/5, or x1 = −

√
3/5,

and the third of the original equations then yields w1 = 5/9. The first equation yields
w2 = 8/9. To summarize, we have found

w1 = 5/9, w2 = 8/9, w3 = 5/9; x1 = −
√

3/5, x2 = 0, x3 =
√

3/5.

Solutions to the Problems for Lecture 41

1. For
∫ h

0 f (x) dx with f (x) = x3, we have

S1 =
h
2
(f (0) + f (h)) =

h4

2
, S2 =

h
4
(f (0) + 2 f (h/2) + f (h)) =

5h4

16
.

Since I = h4/4, we have

E1 = I − S1 = −h4

4
, E2 = I − S2 = − h4

16
,

and E1 = 4E2.

Solutions to the Problems for Lecture 42

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

c = @(x) ... % assign the integrand for C(t)

s = @(x) ... % assign the integrand for S(t)

tmin=-8; tmax=8; nt=2000;

t=linspace(tmin,tmax,nt);

C=zeros(nt,1); S=zeros(nt,1);

for i=1:nt

C(i)=integral(...); % compute C(i) using integral.m and the integrand c(x) defined on top

S(i)=integral(...); % compute S(i) using integral.m and the integrand s(x) defined on top

end

plot(S,C)

xlabel('$S(t)$', 'Interpreter', 'latex', 'FontSize',14);

ylabel('$C(t)$', 'Interpreter', 'latex', 'FontSize',14);

title('Cornu spiral', 'Interpreter', 'latex', 'FontSize',16);

Your plot should look like this:

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 190

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Solutions to the Problems for Lecture 43

1.

a) We interpolate the points (0, 0), (1, 1) and (2, 1). Let y = ax2 + bx + c. Our equations
for a, b and c are

c = 0, a + b + c = 1, 4a + 2b + c = 1.

Solving, we find a = −1/2, b = 3/2 and c = 0. Our interpolating quadratic polyno-
mial is

g(x) = −1
2

x2 +
3
2

x,

and we find g(1/2) = 5/8 and g(3/2) = 9/8.

b) The piecewise linear polynomials are

g0(x) = x, g1(x) = 1,

and we find g(1/2) = 1/2 and g(3/2) = 1.

c) The points and the two interpolating functions are plotted below.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 191

Solutions to the Problems for Lecture 44

1. We use

gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi)+ di, for i = 0, . . . , n− 1 and xi ≤ x ≤ xi+1,

and the additional constraints given by g′0(x0) = y′0 and g′n−1(xn) = y′n. The two con-
straints yield the two additional equations given by

y′0 = c0,

y′n = 3an−1h2
n−1 + 2bn−1hn−1 + cn−1.

Solutions to the Problems for Lecture 45

1. The points to interpolate are (0, 0), (1, 1), (2, 1) and (3, 2). With hi = xi+1 − xi and
ηi = yi+1 − yi, we have

hi = 1, η0 = 1, η1 = 0, η2 = 1.

The not-a-knot condition yields the two equations

b0 − 2b1 + b2 = 0, b1 − 2b2 + b3 = 0.

The full matrix equation for the b-coefficients is then calculated to be
1 −2 1 0

1/3 4/3 1/3 0
0 1/3 4/3 1/3
0 1 −2 1

b0

b1

b2

b3

 =

0
−1

1
0

 .

We can use Matlab as a calculator to solve for b, and then find a, c and d:

b =

−3/2
−1/2

1/2
3/2

 , a =
1
3

1
1
1

 , c =

13/6
1/6
1/6

 , d =

0
1
1

 .

The three interpolating cubic polynomials are given by

g0(x) =
1
3

x3 − 3
2

x2 +
13
6

x,

g1(x) =
1
3
(x− 1)3 − 1

2
(x− 1)2 +

1
6
(x− 1) + 1,

g2(x) =
1
3
(x− 2)3 +

1
2
(x− 2)2 +

1
6
(x− 2) + 1.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 192

If fact, because of the not-a-knot condition, g0 = g1 = g2. The points and the cubic spline
interpolant are plotted below.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Solutions to the Problems for Lecture 46

1. Complete your solution on Coursera using MATLAB. Here is the Learner Template:

load data1; figure(1); plot(x1,y1);

load data2; figure(2); plot(x2,y2);

xx=linspace(0,2*pi,1000);

yy1=interp1(...); %interpolate y1 to the xx grid using 'spline'

yy2=interp1(...); %interpolate y2 to the xx grid using 'spline'

yyadd=yy1+yy2;

figure(3); plot(xx,yyadd);

Here are the resulting plots.

0 1 2 3 4 5 6 7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 193

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Solutions to the Problems for Lecture 47

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

num_roots=5; num_functions=6;

%initial guess for roots (from Wolfram MathWorld)

zeros_guess=[2.4,3.8,5.1,6,7.5,8.7;...

5.5,7,8.4,9.7,11,12;...

8.6 10,11.6,13,14,16;...

11.8,13,15,16,18,19;...

15,16.4,18,19.4,21,22];

%Compute first five roots of first six Bessel functions

%Put in variable bzeros with size(bzeros) = [5, 6]

%print table

fprintf('k J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)\n')

for k=1:num_roots

fprintf('%i',k)

for n=0:num_functions-1

fprintf('%10.4f',bzeros(k,n+1));

end

fprintf('\n');

end

Solutions to the Problems for Lecture 48

1. Let ẋ = b and x(0) = x0. The Euler method applied to the first time step yields

x1 = x0 + b∆t,

where x1 = x(∆t). The next time step yields

x2 = x1 + b∆t = x0 + b(2∆t),

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 194

where x2 = x(2∆t). Continuing to march the solution forward, we obtain

xn = x0 + b(n∆t),

which is equivalent to
x(t) = x0 + bt,

where t = n∆t.

Solutions to the Problems for Lecture 49

1. Let ẋ = bt and x(0) = x0. The Modified Euler method applied to the first time step
yields

k1 = 0, k2 = b(∆t)2, x1 = x0 +
1
2

b(∆t)2,

where x1 = x(∆t). The next time step yields

k1 = b(∆t)2, k2 = 2b(∆t)2, x2 = x1 +
3
2

b(∆t)2 = x0 + 2b(∆t)2 = x0 +
1
2

b(2∆t)2.

Continuing to march the solution forward, we obtain

xn = x0 +
1
2

b(n∆t)2,

which is equivalent to

x(t) = x0 +
1
2

bt2,

where t = n∆t.

Solutions to the Problems for Lecture 51

1. Ralston’s method is given by

k1 = ∆t f (tn, xn), k2 = ∆t f
(

tn +
3
4

∆t, xn +
3
4

k1

)
,

xn+1 = xn +
1
3

k1 +
2
3

k2.

2. Consider the ode given by dy/dx = f (x), with y(0) as the initial value. Separating
variables, and integrating from x = 0 to h yields

∫ y(h)

y(0)
dy =

∫ h

0
f (x) dx, or

∫ h

0
f (x) dx = y(h)− y(0).

We now use our second-order Runge Kutta methods to construct elementary quadrature
formulas.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 195

(a) Midpoint rule

k1 = h f (0), k2 = h f (h/2), y(h) = y(0) + h f (h/2).

The elementary quadrature formula (midpoint rule) is therefore given by

∫ h

0
f (x) dx = h f (h/2).

(b) Modified Euler method

k1 = h f (0), k2 = h f (h), y(h) = y(0) +
1
2

h (f (0) + f (h)) .

The elementary quadrature formula (trapezoidal rule) is therefore given by

∫ h

0
f (x) dx =

1
2

h (f (0) + f (h)) .

Solutions to the Problems for Lecture 52

1. Consider the ode given by dy/dx = f (x), with y(0) as the initial value. Separating
variables, and integrating from x = 0 to 2h yields

∫ y(2h)

y(0)
dy =

∫ 2h

0
f (x) dx, or

∫ 2h

0
f (x) dx = y(2h)− y(0).

We now use the fourth-order Runge Kutta methods to construct an elementary quadrature
formula. We have

k1 = 2h f (0), k2 = 2h f (h), k3 = 2h f (h), k4 = 2h f (2h),

so that
y(2h) = y(0) +

h
3
(f (0) + 4 f (h) + f (2h)) .

The quadrature rule is therefore

∫ 2h

0
f (x) dx =

h
3
(f (0) + 4 f (h) + f (2h)) ,

which is Simpson’s rule.

Solutions to the Problems for Lecture 53

1.

k1 = ∆t f (tn, xn, yn, zn), l1 = ∆tg(tn, xn, yn, zn), m1 = ∆th(tn, xn, yn, zn);

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 196

k2 = ∆t f (tn + ∆t, xn + k1, yn + l1, zn + m1), l2 = ∆tg(tn + ∆t, xn + k1, yn + l1, zn + m1),

m2 = ∆th(tn + ∆t, xn + k1, yn + l1, zn + m1);

xn+1 = xn +
1
2
(k1 + k2) , yn+1 = yn +

1
2
(l1 + l2) , zn+1 = zn +

1
2
(m1 + m2) .

Solutions to the Problems for Lecture 54

1. Since the requested error is less than the estimated error, the current time step is rejected
and redone using a smaller time step. The new time step is predicted to be

∆τ = ∆t
(ε

e

)1/5
= 0.01× (1/1.1)1/5 = 0.0098112.

For a margin of safety, one multiplies by the safety factor of 0.9 to obtain ∆τ = 0.0088301.

Solutions to the Problems for Lecture 56

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

sigma=10; beta=8/3; r=28;

x0=1; y0=1; z0=1; tspan=[0 100];

ntrans=20;

options = odeset('RelTol',1.e-6);

[t,xyz]=ode45(@(t, xyz) lorenz_eqs(PROVIDE

FOUR ARGUMENTS HERE), PROVIDE TWO ARGUMENTS HERE, options);

x=xyz(ntrans:end,1); y=xyz(ntrans:end,2); z=xyz(ntrans:end,3);

plot3(x,y,z);

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('y','Interpreter','latex','FontSize',14);

zlabel('z','Interpreter','latex','FontSize',14);

title('Lorenz Equations','Interpreter','latex','FontSize',16);

function dxyzdt = lorenz_eqs(xyz,sigma,beta,r)

x=xyz(1); y=xyz(2); z=xyz(3);

dxyzdt=

[WRITE THE DIFFERENTIAL EQUATION HERE AS A COLUMN VECTOR. USE VARIABLES x, y AND z.];

end

Your plot should look like this:

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 197

When viewed in the Matlab environment, you can use your mouse to rotate the attractor
for additional clarity.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 198

Solutions to the Problems for Lecture 57

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

theta0=0; u0=2; %initial ode conditions. u0 is initial guess for root.

inf=8*pi; %inf is a large number. Takes a long time to get to top.

tspan=[0 inf];

options = odeset('RelTol',1.e-6);

%rootfind u0 such that theta(inf)=pi

alpha_i=linspace(0, 2, 100);

u0_i=zeros(100,1);

for i=1:length(alpha_i)

alpha=alpha_i(i);

u0_i(i) = fzero(@(u0) F(tspan,theta0,u0,alpha,options), u0);

end

plot(alpha_i, u0_i);

xlabel('α','Interpreter','latex','FontSize',14);

ylabel('$d \theta/dt$','Interpreter','latex','FontSize',14);

title('Shooting to the Pendulum Top','Interpreter','latex','FontSize',16);

function y=F(tspan,theta0,u0,alpha,options)

% use ode45 to define the root-finding problem

end

function d_theta_u_dt = pendulum(theta_u,alpha)

% define the differential equation here

end

Your plot should look like this:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

3

4

5

6

7

8

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 199

Solutions to the Problems for Lecture 58

1.

a) Consider m1 = m2. If r = cos (ωt)i + sin (ωt)j, then

r1 =
1
2
(cos (ωt)i + sin (ωt)j), r2 = −1

2
(cos (ωt)i + sin (ωt)j).

We can sketch the orbits as

b) Consider m1 = 3m2. If r = cos (ωt)i + sin (ωt)j, then

r1 =
1
4
(cos (ωt)i + sin (ωt)j), r2 = −3

4
(cos (ωt)i + sin (ωt)j).

We can sketch the orbits as

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 200

Solutions to the Problems for Lecture 59

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

e=0.7; m1=1; m2=4;

T=2*pi./(1-e).^1.5; tspan=linspace(0,T,1000);

options=odeset('RelTol',1.e-6);

%%%%% Solve differential equations for x and y using ode45

%%%%% with arguments tspan and options.

%%%%% Determine x1, y1 and x2, y2

%

%

%

%%%%% graphics %%

k=0.1;

R1=k*(m1)^(1/3); R2=k*(m2)^(1/3); %radius of masses

theta = linspace(0,2*pi);

figure; axis equal; hold on; set(gcf,'color','w');

axis off;

xlim([-2,5]); ylim([-2.5,2.5]);

planet=fill(R1*cos(theta)+x1(1), R1*sin(theta)+y1(1),'b');

sun=fill(R2*cos(theta)+x2(1), R2*sin(theta)+y2(1),'r');

pause(1);

nperiods=5; %number of periods to plot

for j=1:nperiods

for i=1:length(t)

planet.XData=R1*cos(theta)+x1(i); planet.YData=R1*sin(theta)+y1(i);

sun.XData=R2*cos(theta)+x2(i); sun.YData=R2*sin(theta)+y2(i);

drawnow;

end

end

%%%%% Write local function for differential equations %%%%%%%%%%%%%%

Solutions to the Practice quiz: Classify partial differential equations

1. a. The flow field is determined solely by the boundary conditions.

2. b. The turbulent motion is evolving in time.

3. a. The salt concentration is determined solely by the boundary conditions.

4. b. The salt concentration is evolving in time.

5. a. The potential is determined solely by the boundary conditions.

6. b. The potential is evolving in time.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 201

Solutions to the Problems for Lecture 61

1. We use

y(x + 2h) = y(x) + 2hy′(x) + 2h2y′′(x) +
4
3

h3y′′′(x) +
2
3

h4y′′′′(x) + O(h5),

y(x + h) = y(x) + hy′(x) +
1
2

h2y′′(x) +
1
6

h3y′′′(x) +
1

24
h4y′′′′(x) + O(h5),

y(x− h) = y(x)− hy′(x) +
1
2

h2y′′(x)− 1
6

h3y′′′(x) +
1

24
h4y′′′′(x) + O(h5),

y(x− 2h) = y(x)− 2hy′(x) + 2h2y′′(x)− 4
3

h3y′′′(x) +
2
3

h4y′′′′(x) + O(h5).

Notice that

y(x + h)− y(x− h) = 2hy′(x) +
1
3

h3y′′′(x) + O(h5),

y(x + 2h)− y(x− 2h) = 4hy′(x) +
8
3

h3y′′′(x) + O(h5).

To eliminate the h3 term, we can multiply the first expression by eight and subtract the
second expression to obtain

8(y(x + h)− y(x− h))− (y(x + 2h)− y(x− 2h)) = 12hy′(x) + O(h5).

Solving for the first derivative and rearranging terms, we find

y′(x) =
−y(x + 2h) + 8y(x + h)− 8y(x− h) + y(x− 2h)

12h
+ O(h4).

Solutions to the Problems for Lecture 62

1. The discrete Laplace equation is given by

4Φi,j −Φi+1,j −Φi−1,j −Φi,j+1 −Φi,j−1 = 0.

Solving for Φi,j, we obtain

Φi,j =
1
4
(
Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1

)
.

The right-hand side is just the average value of Φ at the neighboring four grid points.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 202

Solutions to the Problems for Lecture 63

1. The (i, j) coordinates for the four corners starting from the bottom left and moving
clockwise are

(i, j) = (1, 1), (1, ny), (nx, ny), (nx, 1).

Using the mapping (i, j) → k = i + (j− 1)nx, the corresponding k coordinates are given
by

k = 1, nxny − nx + 1, nxny, nx.

Solutions to the Problems for Lecture 64

1. The grid and its k indexing is shown below.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 203

The matrix equation is given by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10

Φ11

Φ12

Φ13

Φ14

Φ15

Φ16

=

b1

b2

b3

b4

b5

0
0
b8

b9

0
0

b12

b13

b14

b15

b16

2. The number of interior points is the number of points in a rectangle with sides nx − 2
and ny − 2 and is given by (nx − 2)(ny − 2). The number of boundary points is given by
2(nx + ny)− 4. When nx = ny = 100, there are 9,604 interior points and 396 boundary
points. When nx = ny = 1000, there are 996,004 interior points and 3,996 boundary points.
The percentage of boundary points to total number of grid points are, respectively, 3.96%
and 0.3996%, or about 4% and 0.4%. Boundary points make up a small fraction of a large
grid, which is why we can include them in our matrix without much additional cost.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 204

Solutions to the Problems for Lecture 65

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

%%%%% Define the rectangle and grid parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%

Lx=1; Ly=1; %rectangle dimensions

Nx=100; Ny=100; %# of intervals

nx=Nx+1; ny=Ny+1; %# of gridpoints in x,y directions including boundaries

dx=Lx/Nx; dy=Ly/Ny; %grid size in x,y directions

x=(0:Nx)*dx; y=(0:Ny)*dy; %x,y values on the grid

%%%%% Define the indices associated with the boundaries %%%%%%%%%%%%%%%%%%%

% boundary_index = [bottom, left, top, right]

boundary_index=[1:nx, 1:nx:1+(ny-1)*nx, ...

1+(ny-1)*nx:nx*ny, nx:nx:nx*ny];

%%%%% Set up matrix %%%

diagonals = [4*ones(nx*ny,1), -ones(nx*ny,4)];

A=spdiags(diagonals,[0 -1 1 -nx nx], nx*ny, nx*ny); %use sparse matrices

I=speye(nx*ny);

A(boundary_index,:)=I(boundary_index,:);

%%%%% SET-UP RIGHT HAND SIDE %%

b=zeros(nx,ny);

b(:,1)=...; %bottom

b(1,:)=...; %left

b(:,ny)=...; %top

b(nx,:)=...; %right

b=reshape(b,nx*ny,1); %make column vector

%%%%% Solve the Laplace equation using Gaussian elimination %%%%%%%%%%%%%%%

Phi=A\b; %solution step (all the computational time is here)

Phi=reshape(Phi,nx,ny); %make matrix

%%%%% Graphics %%

[X,Y]=meshgrid(x,y);

v=[DEFINE APPROPRIATE COUNTOUR LEVELS];

contour(X,Y,Phi',v,'ShowText','on');%requires transpose (read the notes)

axis equal;

set(gca, 'YTick', [0 0.2 0.4 0.6 0.8 1]);

set(gca, 'XTick', [0 0.2 0.4 0.6 0.8 1]);

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('y','Interpreter','latex','FontSize',14);

title('Solution of the Laplace equation','Interpreter','latex','FontSize',16);

Solutions to the Problems for Lecture 66

1.

x(n+1)
1 =

1
a11

(
b1 − a12x(n)2 − a13x(n)3

)
,

x(n+1)
2 =

1
a22

(
b2 − a21x(n)1 − a23x(n)3

)
,

x(n+1)
3 =

1
a33

(
b3 − a31x(n)1 − a32x(n)2

)
.

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 205

Solutions to the Problems for Lecture 68

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

%%%%% Define the rectangle and grid parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%

Lx=1; Ly=1; %rectangle dimensions

Nx=100; Ny=100; %# of intervals

nx=Nx+1; ny=Ny+1; %# of gridpoints in x,y directions including boundaries

dx=Lx/Nx; dy=Ly/Ny; %grid size in x,y directions

x=(0:Nx)*dx; y=(0:Ny)*dy; %x,y values on the grid

%%%%% Define the iteration parameters and initial condition %%%%%%%%%%%%%%%

eps=1.e-6; %convergence criteria for each value of Phi

index_x=2:nx-1; index_y=2:ny-1; %internal grid points

Phi=zeros(nx,ny);%matrix with solution and boundary conditions

%%%%% DEFINE THE BOUNDARY CONDITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%set the boundary conditions

Phi(:,1)=...; %bottom

Phi(1,:)=...; %left

Phi(:,ny)=...; %top

Phi(nx,:)=...; %right

%%%%% Jacobi iteration %%

Phi_old=Phi;

error=2*eps; ncount=0;

while (error > eps)

ncount=ncount+1;

Phi(index_x,index_y)=0.25*(Phi(index_x+1,index_y) ...

+Phi(index_x-1,index_y)+Phi(index_x,index_y+1)+Phi(index_x,index_y-1));

error=max(abs(Phi(:)-Phi_old(:)));

if any(isnan(Phi(:))) || any(isinf(Phi(:)))

fprintf('iterations diverge\n');

return;

end

Phi_old=Phi;

%fprintf('%g %e\n',ncount, error);

end

fprintf('%g\n',ncount);

%%%%% graphics %%

[X,Y]=meshgrid(x,y);

v=[]; %SET THE CONTOUR LEVELS

contour(X,Y,Phi',v,'ShowText','on');%requires transpose (read the notes)

axis equal;

set(gca, 'YTick', [0 0.2 0.4 0.6 0.8 1]);

set(gca, 'XTick', [0 0.2 0.4 0.6 0.8 1]);

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('y','Interpreter','latex','FontSize',14);

title('Solution of the Laplace equation','Interpreter','latex','FontSize',16);

Solutions to the Problems for Lecture 69

1. The two-step solution of the one-dimensional diffusion equation using the modified

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 206

Euler method is given by

ũl+1
j = ul

j +
∆tD
(∆x)2

(
ul

j+1 − 2ul
j + ul

j−1

)
,

ul+1
j = ul

j +
∆tD

2(∆x)2

[(
ul

j+1 − 2ul
j + ul

j−1

)
+
(

ũl+1
j+1 − 2ũl+1

j + ũl+1
j−1

)]
.

2. The FTCS scheme for the advection equation is given by

ul+1
j = ul

j −
c∆t
2∆x

(
ul

j+1 − ul
j−1

)
.

Solutions to the Problems for Lecture 70

1. We look for solutions of the form

ul
j = ξ leikj∆x.

Substitution into the discrete advection equation and dividing by ξ leikj∆x results in

ξ = 1− c∆t
2∆x

(
eik∆x − e−ik∆x

)
= 1− i

c∆t
∆x

sin (k∆x).

The modulus of ξ is given by

|ξ| =

√
1 +

(
c∆t
∆x

)2
sin2 (k∆x).

The value of |ξ| is largest when sin2 (k∆x) = 1, and since for this value |ξ| > 1 no matter
the value of ∆t, the method is always unstable.

Solutions to the Problems for Lecture 71

1.

a) The implicit scheme for the advection equation is given by

ul+1
j = ul

j −
c∆t
2∆x

(
ul+1

j+1 − ul+1
j−1

)
.

b) We look for solutions of the form

ul
j = ξ leikj∆x.

Substitution into the implicit discrete advection equation and dividing by ξ leikj∆x

results in
ξ = 1− c∆tξ

2∆x

(
eik∆x − e−ik∆x

)
= 1− i

c∆tξ
∆x

sin (k∆x).

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 207

Solving for ξ, we obtain

ξ =
1

1 + i c∆t
∆x sin (k∆x)

.

The modulus of ξ is given by

|ξ| = 1√
1 +

(
c∆t
∆x

)2
sin2 (k∆x)

.

The value of |ξ| is largest when sin2 (k∆x) = 0, and for this value |ξ| = 1. The
method is unconditionally stable.

Solutions to the Problems for Lecture 72

1. The Lax scheme for the advection equation is given by

ul+1
j =

1
2
(ul

j+1 + ul
j−1)−

c∆t
2∆x

(ul
j+1 − ul

j−1).

We look for solutions of the form
ul

j = ξ leikj∆x.

Substitution into the Lax scheme and dividing by ξ leikj∆x results in

ξ =
1
2

(
eik∆x + e−ik∆x

)
− c∆t

2∆x

(
eik∆x − e−ik∆x

)
= cos (k∆x)− i

c∆t
∆x

sin (k∆x).

The modulus of ξ is given by

|ξ| =

√
cos2 (k∆x) +

(
c∆t
∆x

)2
sin2 (k∆x).

Clearly, the Lax scheme is stable provide that

(
c∆t
∆x

)2
≤ 1.

which is called the Courant-Friedrichs-Lewy (CFL) stability criterion.

Solutions to the Problems for Lecture 73

1.

a) For x a boundary point on the left, we start with

y(x + h) = y(x) + hy′(x) +
1
2

h2y′′(x) + O(h3),

y(x + 2h) = y(x) + 2hy′(x) + 2h2y′′(x) + O(h3).

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 208

To eliminate the term proportional to h2, we multiply the first equation by four and
subtract the second equation to obtain

4y(x + h)− y(x + 2h) = 3y(x) + 2hy′(x) + O(h3).

Solving for y′(x), we find

y′(x) =
−3y(x) + 4y(x + h)− y(x + 2h)

2h
+ O(h2).

For x a boundary point on the right, we start with

y(x− h) = y(x)− hy′(x) +
1
2

h2y′′(x) + O(h3),

y(x− 2h) = y(x)− 2hy′(x) + 2h2y′′(x) + O(h3).

We multiply the first equation by four and subtract the second equation to obtain

4y(x− h)− y(x− 2h) = 3y(x)− 2hy′(x) + O(h3).

Solving for y′(x), we find

y′(x) =
3y(x)− 4y(x− h) + y(x− 2h)

2h
+ O(h2).

b) Written in discretized form, the second-order method for the x- derivative at bound-
ary points become

y′1 =
−3y1 + 4y2 − y3

2∆x
, y′nx =

3ynx − 4ynx−1 + ynx−2

2∆x
.

We apply these equations to ul
j and set the partial derivatives with respect to x to be

zero at the boundary points. We can then solve for u at the boundaries to obtain

ul
1 =

1
3
(4ul

2 − ul
3), ul

nx =
1
3
(4ul

nx−1 − ul
nx−2).

2. Complete your solution on Coursera using Matlab. Here is the Learner Template:

D=1; %diffusion coefficient

%%%%% Define the x-domain and x-grid %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Lx=1; %domain: -Lx < x < Lx

Nx=500; %# of intervals

nx=Nx+1;%# of gridpoints in x

dx=2*Lx/Nx; %grid length in x

x=-Lx + (0:Nx)*dx; %x values on the grid

%%%%% Time step parameters %%

nsteps=10000; %number of time steps

nout=500; %plot every nout time steps

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 209

dt=(dx)^2/(2*D); %borderline stability of FTCS scheme

alpha=dt*D/dx^2; %equation parameter

%%%%% Construct the matrix %%

diagonals = [2*(1+alpha)*ones(nx,1), -alpha*ones(nx,2)];

A=spdiags(diagonals,[0 -1 1], nx, nx);

I=speye(nx);

A([1 nx],:)=I([1 nx],:); %boundaries

%%%%% Define initial conditions and plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma=Lx/16;

u=1/(sigma*sqrt(2*pi))*exp(-0.5*(x/sigma).^2); u=u';

plot(x,u,'r'); hold on;

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('$u(x, t)$','Interpreter','latex','FontSize',14);

title('Solution of the diffusion equation','Interpreter','latex','FontSize',16);

%%%%% Advance solution and plot %%%

for m=1:nsteps

b=[NO-FLUX BOUNDARY CONDITION; ...

[alpha*u(1:nx-2) + 2*(1-alpha)*u(2:nx-1) + alpha*u(3:nx)]; ...

NO-FLUX BOUNDARY CONDITION];

u=A\b;

if mod(m,nout)==0, plot(x,u,'b'), end

end

Your plot should look like this:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

PROBLEM SOLUTIONS AND MATLAB LEARNER TEMPLATES 210

Solutions to the Problems for Lecture 74

1. Complete your solution on Coursera using Matlab. Here is the Learner Template:

%%%%% Define the square and grid parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L=1; %square is 2L x 2L

N=100; %# of intervals in x and y directions

n=N+1; %# of gridpoints in x,y directions including boundaries

h=2*L/N; %grid size in x,y directions

x=-L + (0:N)*h; %x values on the grid

y=-L + (0:N)*h; %y values on the grid

[X,Y]=meshgrid(x,y);

%%%%% Define the indices associated with the boundaries %%%%%%%%%%%%%%%%%%%

% boundary_index = [bottom, left, top, right]

boundary_index=[1:n, 1:n:1+(n-1)*n, ...

1+(n-1)*n:n*n, n:n:n*n];

%%%%% Diffusion constant and time-step parameters

D=1;

dt=h^2/(2*D); %borderline stability of FTCS scheme

alpha=dt*D/h^2; %equation parameter

nsteps=1000; %number of time steps

%%%%% CONSTRUCT THE MATRIX AND COMPUTE LU DECOMPOSITION %%%%%%%%%%%%%%%%%%%%

%

%

%

%

%

%%%%% Define initial conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

u=zeros(n,n,nsteps);

sigma=L/4;

u(:,:,1)=1/(2*pi*sigma^2)*exp(-0.5*(X.^2+Y.^2)/sigma^2);

u(1,:,1)=0; u(n,:,1)=0; u(:,1,1)=0; u(:,n,1)=0; %b.c.

%%%%% ADVANCE SOLUTION u %%%

for m=2:nsteps

%

%

%

%

%

%

end

%%%% Plot with animation %%%

figure('units','normalized','outerposition',[0 0 1 1])

s=surf(X,Y,u(:,:,1)); zlim([0, 2.6]);

xlabel('x','Interpreter','latex','FontSize',14);

ylabel('y','Interpreter','latex','FontSize',14);

zlabel('$u(x,y,t)$','Interpreter','latex','FontSize',14);

title('Solution of the 2D diffusion equation','Interpreter','latex','FontSize',16);

pause(1)

for j=2:nsteps

s.ZData=u(:,:,j); pause(0.01);

end

	I Scientific Computing
	Binary numbers
	Double precision
	Matlab as a calculator
	Scripts and functions
	Vectors
	Line plots
	Matrices
	Logicals
	Conditionals
	Loops
	Project I: Logistic map (Part A)
	Project I: Logistic map (Part B)

	II Root Finding
	Bisection method
	Newton's method
	Secant method
	Order of convergence
	Convergence of Newton's method
	Fractals from Newton's method
	Coding the Newton fractal
	Root finding in Matlab
	Project II: Feigenbaum delta (Part A)
	Project II: Feigenbaum delta (Part B)
	Project II: Feigenbaum delta (Part C)

	III Matrix Algebra
	Gaussian elimination without pivoting
	Gaussian elimination with partial pivoting
	LU decomposition with partial pivoting
	Operation counts
	Operation counts for Gaussian elimination
	Operation counts for forward and backward substitution
	Eigenvalue power method
	Eigenvalue power method (example)
	Matrix algebra in Matlab
	Systems of nonlinear equations
	Systems of nonlinear equations (example)
	Project III: Fractals from the Lorenz equations

	IV Quadrature and Interpolation
	Midpoint rule
	Trapezoidal rule
	Simpson's rule
	Composite quadrature rules
	Gaussian quadrature
	Adaptive quadrature
	Quadrature in Matlab
	Interpolation
	Cubic spline interpolation (Part A)
	Cubic spline interpolation (Part B)
	Interpolation in Matlab
	Project IV: Bessel functions and their zeros

	V Ordinary Differential Equations
	Euler method
	Modified Euler method
	Runge-Kutta methods
	Second-order Runge-Kutta methods
	Higher-order Runge-Kutta methods
	Higher-order odes and systems
	Adaptive Runge-Kutta methods
	Integrating odes in Matlab (Part A)
	Integrating odes in Matlab (Part B)
	Shooting method for boundary value problems
	Project V: Two-body problem (Part A)
	Project V: Two-body problem (Part B)

	VI Partial Differential Equations
	Boundary and initial value problems
	 Practice quiz: Classify partial differential equations
	Central difference approximation
	Discrete Laplace equation
	Natural ordering
	Matrix formulation
	Matlab solution of the Laplace equation (direct method)
	Jacobi, Gauss-Seidel and SOR methods
	Red-black ordering
	Matlab solution of the Laplace equation (iterative method)
	Explicit methods for solving the diffusion equation
	Von Neumann stability analysis
	Implicit methods for solving the diffusion equation
	Crank-Nicolson method for the diffusion equation
	Matlab solution of the diffusion equation
	Project VI: Two-dimensional diffusion equation

	Problem solutions and Matlab learner templates

